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1.  INTRODUCTION

Modelling the spread of fires across the landscape has
been an area of significant study in fire research since
the introduction of personal computers (Kourtz et al.
1977).  Since then, a variety of models have been
produced emphasizing one technique over another
(Feunekes 1991, Richards 1994, Finney 1998).

One aspect that has not been fully addressed is the role
of the weather forecast and the reliability of such
forecasts over time.  For the most part, deterministic
fire-growth models have worked on the assumption that
the detailed meteorological data being used by the
system is accurate and reliable.  Since weather cannot
be accurately predicted beyond a few days
(Smagorinsky 1967), this severely limits the medium to
long-range application of fire-growth modelling.

This paper presents the use of ensemble techniques in
fire-growth modelling.  Errors and uncertainties in the
evolution of meteorological parameters are introduced
into a deterministic eight-point fire-growth model to
produce an ensemble of possible final fire perimeters.
Errors, whether they be from forecasts or observations,
take the form of systematic or random errors and the
probabilities associated with these errors are calculated
and presented in the final perimeter fields.  Detailed
time series of  temperature, humidity, wind speed and
direction are examined to show the nature and extent of
these observational errors.  Finally, this approach is
applied on an observed forest fire in Wood Buffalo
National Park.

1.1 Ensemble Modelling

Ensemble modelling is a numerical modelling technique
used in meteorology (Roebber et al 2004; Toth and
Kalnay 1993) as well as other sciences such as
genetics, biochemistry, and artificial intelligence.  In
ensemble meteorological forecasts, numerical weather
models are run repeatedly with perturbations to the
initial condition fields.  These perturbations are equal to
expected measurement errors. The multiple runs
provide variation in the output fields.  Alternatively,

several different models can be run to provide the
variation.  Based upon these observable variations,
weather forecasters can assess their confidence in the
numerical products, reflecting this in their forecasts.

Ensemble modelling provides the probabilistic
calculations required for risk management.  This
approach has been successfully used to track
hurricanes, to predict precipitation amounts and the
dispersion of atmospheric pollutants, and to aid in long-
range weather forecasting.

1.2 Errors

Ensemble theory is based on the assumption that
conditions required for numerical models cannot be
accurately measured everywhere, and that there will be
errors inherent in the dataset – both spatially and
temporally.  Errors can take on two forms: random and
systematic (Taylor 1982).  

A random error is an error in measurement related to
the observational accuracy of the measuring device.
For example, the period of a pendulum may be
measured as 2.5 seconds on the first swing, 2.4
seconds the swing, and so on. Through repeated
measurements, one gets a distribution of possible
results, the best estimate being the average value,
while the range of results would be  from random error.

A systematic error is a consistent error that affects all
measurements equally and is not revealed through
repeat experiments.  Often these errors are related to
the measuring device whether it be a clock that runs
fast or an instrument not properly calibrated.

Both errors play a role in meteorology. Random errors
in measurement are often a result of turbulent air
motion and these fluctuations happen down to the
microscale.  Systematic errors often enter through
forecast bias.  For example, a forecaster’s
overprediction of the next day’s maximum  temperature
would consistently affect all the afternoon’s
temperatures.
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2.  METHODOLOGY

This paper sets out to incorporate ensemble modelling
techniques into fire-growth modelling.  For this, two
studies were conducted.  The first was a simulated fire
study using detailed, one-minute weather observation
streams.  These data were used to determined the
effects of random errors on hourly growth model runs.
The second was a case study examining a large fire in
Wood Buffalo National Park.  Here, the impact of
systematic errors are examined and how well ensemble
models capture the effects.

2.1 Fire-growth model

The fire-growth model in this study uses a deterministic,
eight-point propagation routine (Kourtz et al.  1977) to
estimate the time of ignition of each cell.  Spread from
one cell to the next is calculated through a series of
one-minute time steps, allowing for diurnal variation
while limiting spread to the cells in question.

The Canadian Forest Fire Behaviour Prediction (FBP)
System (Forestry Canada Fire Danger Group 1992) is
used to estimate the rate of spread.  The FBP system
is an empirical model that predicts fire behaviour
conditions for 17 fuel types found in Canada.  Using
daily and hourly weather values and indexes from the
Canadian Forest Fire Weather Index (FWI) System
(Van Wagner 1987) as inputs, the FBP system predicts
measurable physical parameters, including the forward
rate of spread (ROS) in metres per minute.  For this
study, the Fine Fuel Moisture Code (FFMC) was set to
be in equilibrium with the environment (Van Wagner
1987).

The directional component of the rate of spread is
calculated assuming elliptical fire growth.  With the
ignition point at one of the foci, the direction component
of the rate of spread becomes

where 2 is the departure from the wind direction, r(2) is

hthe rate of spread with respect to 2, r  is the head fire
rate of spread and LB is the length to breadth ratio: an
FBP system output primarily dependent on wind speed.

It is worth noting that this paper uses a simple cell-
based growth procedure.  Other fire-growth models use
more sophisticated techniques such as the wave-
propagation models developed by Richards (1994) and
Finney (1998).  This paper does not advocate one
method over another but focuses on ensemble
technique, using tools at hand.  Techniques presented
in this paper can be applied to any growth model.

2.2 Simulated Fire Study

Two sets of weather data (three afternoons in total)
were used in this study.  Each of these data sets

contained one-minute measurements of temperature,
relative humidity, wind speed and direction.  There was
no precipitation on these days.

The first set contains data from a prairie grass
restoration fire conducted on April 30, 2000 near
Coldwater, Ontario.  The weather station was set up in
a large open field about 250 metres upwind of the fire.
For this study, wind was measured from an
anemometer positioned  2.5 metres above the surface.
As this is a hypothetical study, no adjustments were
made to the wind data.

The second set is from the LaFoe Creek mixedwood
experiment, May 19 and 20, 2000 . The burn site is
about 60 kilometres north of the town of Thessalon,
Ontario.  Data is taken from the main weather station
for that site, with an anemometer height of 10 metres.

In the Coldwater dataset, the measurements were by
the minute from 1207 to 1524.  Measurements in the
LaFoe dataset were made by the minute from 1213 to
1655 on May 19 and from 1350 to 1621 on May 20.

The one-minute weather data were used as a basis for
a set of ensemble runs.  Hourly averages of the
temperature, relative humidity, wind speed and
direction were calculated.  Random error values for
each parameter were calculated as the standard
deviation of the perturbations of each minute
observation from the hourly means.

The fire growth was calculated on a homogeneous
boreal spruce (C2) fuel type, with 10-metre grid cells.

The fire-growth model was run using the averaged
hourly  weather values.  This represents the baseline
prediction.  Next, the model was run using the detailed
minute data. 
 
The model was then run with random errors added to
each value of the averaged hourly weather stream.  In
this case, the random errors were generated assuming
normal distributions with the calculated standard
deviation of observed values.  The model was run 100
times in a Monte Carlo fashion to produce a distribution
of possible final fire perimeters.

Finally, the model was run using the standard deviation
of observed values as systematic errors.  By applying
a systematic error positively or negatively to one of the
averaged hourly weather parameters, eight
permutations of the weather stream were derived.
These along with the unperturbed weather produced
nine possible fire perimeters for the ensemble.

2.3 Case Study: Fire 03WB007

A case study was conducted to test the ensemble
technique on a large fire in Canada.  For this purpose,
Fire 03WB007 in Wood Buffalo National Park was
chosen.  



Ignited by lightning on July 28, 2003, Fire 03WB007
was discovered on the July 30 at a size of 350 ha.
Because of resource limitations due to the severe fire
situation in southern British Columbia (Filmon 2004),
03WB007 was placed under monitoring status.  Strong
winds on August 15 to 17 resulted in explosive fire
growth from 20 000 ha to 84 500 in three days.
Attempts were made with air tankers and drip torches
to slow the fire spread but these were ineffective due to
high intensities, rapid growth and poor visibility.  After
August 18, high humidity and small amounts of
precipitation reduced the fire intensity, allowing for
limited suppression activity and eventual containment
of the fire.  The final fire size on August 24 was 84 750
ha.

For this historical analysis, the fire-growth model was
run for August 16 to 19 using a 141 metre resolution
fuels grid for the park.

A daily ignition grid was built using a 707 metre buffer
around the previous day’s observed hotspots as
detected by MODIS and NOAA AVHRR (Quayle et al.
2003; Englefield et al. 2004).  August hotspots prior to
the previous day were considered burned area and thus
excluded from potential fire growth.

Weather from Fort Smith was used for the analysis.
Hourly weather was used with the fire-growth model to
approximate the actual fire growth, while daily
maximum/minimum temperatures and wind speeds,
and minimum humidity were used to approximate a
daily weather forecast.  Wind direction at the time of
maximum wind speed was used for the forecast.
Diurnal trends were built following Beck and Trevitt
(1989).  The precipitation on Aug 18 (trace) and 19 (5
mm) were ignored for this study.

Ensemble model runs were conducted on the forecast
data.  Random errors of 2.9 , 11.3%, 7.5 km/hr and 58o o

were derived from the standard deviation of the
perturbation of Beck and Trevitt’s diurnal trends from
actual hourly weather.   On the other hand, systematic
errors of 2  for temperature, 10% for humidity, 10 km/hro

for wind and 45  for wind direction were arbitrarilyo

chosen based on estimated errors of forecasted
weather conditions.

3.  RESULTS

3.1 Simulated Fire Study

Table 1 shows the results of averaging the hourly
weather values from the minute data for Coldwater and
LaFoe data sets.  The standard deviations of the
observed minute data were used as the random error
terms for the ensemble model runs. 

Table 1. Hourly weather values and
errors used from minute data.

Date Hour Temp RH WS WD

Apr
30

1200
1300
1400
1500

Error

11.48
11.81
11.70
12.16

0.52

31.52
26.78
25.85
24.36

3.19

10.31
8.89
10.18
11.43

3.95

287.14
298.00
299.75
299.12

21.69

May
19

1200
1300
1400
1500
1600

Error

12.67
14.07
15.21
15.95
15.91

1.28

22.42
20.41
19.55
18.17
18.48

2.26

0.26
1.72
1.29
0.82
1.56

3.00

66.28
264.94
272.46
242.71
218.43

71.70

May
20

1300
1400
1500
1600

Error

18.20
18.79
19.60
19.80

0.61

18.77
17.33
15.89
15.53

1.47

2.13
1.80
1.29
0.95

2.76

229.26
288.94
203.66
273.11

63.26

Table 2 shows the predicted fire sizes for the three
simulated fires using the averaged hourly data and the
detailed minute data.  

Table 2. Fire growth results for
simulated fires 

Date Ignition
time

Burn
Period
(hrs)

Fire size (ha)

Hourly Minute

Apr 30
May 19
May 20

1200
1200
1300

3.2
4.4
2.4

176.31
978.67
444.53

209.65
1091.55

538.23

Table 3 shows the predicted fire size for the ensemble
runs for the three simulated fires.  The probability
values capture the average and standard deviation of
the fire size.  

Table 3. Ensemble model results for
simulated fires

Fire Size (ha)

Probability: 0.8414
(0.777)

0.5
(0.555)

0.15865
(0.222)

Random:
Apr 30

May 19
May 20

128.24
793.56
344.49

184.69
963.32
440.25

262.64
1153.79

531.9

Systematic:
Apr 30

May 19
May 20

126.72
803.01
378.99

174.8
971.97
443.15

238.48
1154.86

526.76



Note that because the systematic ensemble consists of
only nine possible perimeters, the resulting probabilities
are in steps of 0.111 or fractions of 1/9.  As a result, the
standard deviation range captures the probability range
of 0.777 and 0.222.

3.2 Case Study: Fire 03WB007

Table 4 shows the predicted fire sizes for the Wood
Buffalo National Park fire using the observed hourly
data and the forecast data.  

Table 4. Fire growth results for Fire
03WB007

Date

Daily fire growth (ha)

Hourly data Forecast data

Aug 16
Aug 17
Aug 18
Aug 19

10 778
19 646
15 972

1 700

16 370
26 506
24 356

4 699

Table 5 shows the predicted fire size for the ensemble
runs for the Wood Buffalo National Park fire.  The
probability values capture the average and standard
deviation of the fire size.

Table 5. Ensemble model results
for Fire 03WB007

Daily fire growth (ha)

Probability 0.84135
(0.777)

0.5
(0.555)

0.15865
(0.222)

Random:
Aug 16
Aug 17
Aug 18
Aug 19

15 352
26 426
24 706

3 923

22 043
35 206
30 694

5 684

30 922
47 555
37 383

8 245

Systematic:
Aug 16
Aug 17
Aug 18
Aug 19

7 739
17 739
16 710

2 228

15 698
25 936
24 262

4 583

34 194
36 657
32 987

7 813

Note that because the systematic ensemble consists of
only nine possible perimeters, the resulting probabilities
are in steps of 0.111 or fractions of 1/9.  As a result, the
standard deviation range captures the probability range
of 0.777 and 0.222.

4. DISCUSSION

4.1 Simulated Fire Study

In this study, fire-growth model runs based on detailed,
minute weather data were compared with those based
on averaged hourly weather data.  In turn, these were

compared with ensemble predictions to see if the
ensembles captured some of the lost details.

Figure 1 shows the fire-growth simulations for the
Coldwater (April 30) data set.  Orange indicates the
hourly-data model run, while yellow shows the minute-
data model run.  Contours indicate the distribution of
the ensemble of 100 random-error models runs (red
indicates area burned in all runs).

Table 2 shows the fire-growth simulation based on the
averaged hourly data produced a smaller fire than the
detailed simulation based on the minute data.  In this
case, the detailed run was 19% larger than the
averaged run.  This tendency carried through the other
two simulations with the detailed runs 12% and 21%
larger than the averaged runs. This result is consistent
with the non-linear relationship of rate of spread with
wind speed for the boreal spruce (C2) fuel type of the
FBP system (Forestry Canada Fire Danger Group
1992).  The contribution to forward spread from wind
gusts is greater than that lost during the lulls.

The random-error ensemble model runs produced
forward fire spread comparable to the averaged hourly
data as indicated by the ensemble’s 50% contour, while
the minute-data forward spread reached 20%.  The
ensemble model produced flank and back spreads
comparable to the detailed minute simulation.  This is
due to the variable wind direction, which is causing the
fire to spread out.  This did not show in the LaFoe
Tower runs due to the already light, variable wind
speed. 

Figure 1. Fire-growth simulations for Coldwater data
set.  Yellow and orange indicate the minute-data and
hourly-data model runs.  Contours indicate the
distribution of the ensemble of 100 random-error
models runs (red indicates area burned in all runs).



The systematic-error ensemble model runs produced
results similar to the random-error runs but with less of
a smooth spread.  This is shown in Figure 2.  The step-
like pattern is a result of the limited number of runs in
this ensemble (9 versus 100). 

Overall, the detailed minute-data fire size fell within the
35% probable fire size as predicted by the random-error
ensemble and the 22% probable fire size as predicted
by the systematic-error ensemble.  This suggests at this
time and space (micro) scale  that the errors are more
random in nature.

Naturally, fire behaviour officers will not have minute
data upon which to conduct their fire-growth
predictions, nor would this data be consistent spatially
across the fire.  In this case, it is demonstrated that the
random-error ensemble model runs capture some of
the variability lost when meteorological parameters are
averaged up to the more commonly-used hourly data
sets.  Typically, these sets  provide only the ten-minute
average conditions on the hourly, overlooking any
events that may occur between measurements.  

4.2 Case Study: Fire 03WB007

In this study, the ensemble approach was applied to a
historical case study.  Fire growth based on forecasted
weather was compared to historical fire growth as
approximated by hourly weather data.  This was
compared with ensemble runs to see if they captured
any deficiencies in the forecast.

Note that by using the actual weather to approximate
the historical fire growth, we eliminate any deficiencies
in the fuel map, the FBP system or how well the Fort
Smith weather data represented conditions on the fire
site.  All model runs used the same background data
except where specifically addressed.  With that said,
fire progress based on the actual hourly weather

corresponds well with that based on observed daily
hotspot but such a validation is left for future study.

Figure 3 shows the fire-growth simulations for August
17 using the hourly (in orange) and forecasted (in
yellow) data sets. Contours show the systematic-error
ensemble model run.  The previous day’s hotspots
used as the ignition source are shown in black, while
prior hotspots are shown as grey.  These are
interpreted as burned area.

The predicted fire growth based on the forecasted
weather data is 35% larger than the historical fire
growth as approximated by the hourly weather data.
The general shape and direction of fire growth is in
agreement though suggesting the importance of
accurately forecasted wind directions.

The 55% systematic-error ensemble model prediction
closely matches the fire growth based on forecasted
weather.  This is natural as the no-error data stream is
one of the nine streams used in the ensemble.  The
approximated historic fire spread generally follows the
systematic-error ensemble model’s 77% contour.

Table 4 shows that fire growth based on forecasted
data over-predicted the historical growth on all days –
by over 200% on August 19, and by 35% to 55% on the
other days.  This suggests that in this case the
forecasted diurnal trends of the weather values are too
high.  The ensemble model runs using systematic-error
compensate for this error with two days out of the four
falling within the 22%-77% probability range
(approximately one standard deviation) and the other
two days slightly outside the range (possibly falling
within a standard deviation of error).  Comparatively,
none of the random predictions captured within one

Figure 2. Fire sizes and ensemble predictions for
Coldwater (April 30) simulation.  Solid boxes indicate
the final fire sizes of the hourly-data (orange) and
minute-data (yellow) runs.  Curves indicate the probably
of area burned.

Figure 3. Fire-growth simulations and systematic-error
ensemble model runs for Fire 03WB007 for August 17,
2003.



standard deviation the approximated historical size
suggesting that at this meso time and space scale  the
errors are more systematic in nature.

5.  CONCLUSIONS

This paper presents an ensemble approach to fire-
growth modelling.  Ensembles of the input weather
stream were built to compare the effects of random and
systematic errors on fire growth.
In the simulated fire study,  minute data were used to
create a detailed fire-growth simulation.  This was
compared with fire growth based on the more
commonly-used hourly data.  Results showed that the
detailed weather produced fire growth larger and wider
than the hourly-based data.  Variations in the flank and
back-fire spread were captured by the random-error
ensemble model while the forward spread fell within the
20 to 30% prediction.

The case study showed that fire predictions based on
weather forecasts over-predicted the fire growth based
on actual weather.  The systematic-error ensemble
models were capable of compensating for this error
with the predicted fire perimeters falling with the
predicted range of the models.

Results of both studies show that ensemble models are
capable of capturing the variations of meteorological
data.  While both random and systematic errors are
important to fire spread, random errors appear to be
more important at the smaller, hourly scale, while
systematic errors appear more important at the larger,
daily scale.  Admittedly, these statements are based on
a limited number of study and more extensive study is
needed to substantiate these conclusions.  Still, errors
and uncertainties, whether they be random or
systematic, are a significant element in modelling fire
spread.  Capturing their effects and measuring them
are a valuable step in predicting potential fire
behaviour.
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