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1.  INTRODUCTION 
 

Wildfires are commonplace in the Black Hills 
and in many parts of the United States each sum-
mer. They occur naturally by lightning and by vari-
ous human causes such as escaped campfires, 
debris burning, and arson. The risk of wildfire igni-
tion depends on an assortment of factors ranging 
from various forest fuel conditions, weather and 
climate conditions, and the day of the week and 
time of year (Carter and Rolph 1975, Nickey and 
Chapman 1979, Walker et al. 1979).  

  
The combustion process, whether initiated by 

a lightning strike or caused by humans, occurs as 
fuel elements in the forest are “cooked” out of the 
fuel by intense heating. This process is known as 
pyrolysis, which is largely dependent on the tem-
perature of the fuels (Susott 1984) and immedi-
ately precedes ignition. In fact, lower temperatures 
under which pyrolysis occurs leads to char forma-
tion while higher temperatures generated from the 
ignition source leads to flaming combustion (Kilzer 
and Broido 1965). Energy released from the igni-
tion source must be transferred into the fuel to ini-
tiate pyrolysis. Because of the temperature and 
fuel duration requirements needed to begin pyro-
lysis, lightning-ignited fires are distinguished from 
propagating fires. A heat pulse of energy gener-
ates spontaneous ignition like that occurring from 
a lightning strike and either ignition occurs or not. 
In propagating fires, a steadily increasing or con-
stant heat source is observed for longer durations, 
which may be followed by a pulse or increase in 
heat. Once again, ignition may or may not ensue 
(Cox 1995). It is assumed for this study that light-
ning-caused wildfires ignite under different fuel 
and weather conditions than do human-caused 
wildfires at least to some degree.  

  

A definition of forest fire risk is given in the 
2002 Glossary of Forest Fire Management Terms 
(http://wlapwww.gov.bc.ca/esd/fire_mgmt_ 
gloss_2002.pdf) by “the probability or chance of 
fire starting determined by the presence and activi-
ties of causative agents.” Estimating forest fire risk 
involves identifying the possible sources of ignition 
and the factors that allowed ignition to occur. Chu-
vieco and Congalton (1989) stated that fire risk is 
“the union of two components: fire hazard and fire 
ignition.” Once the hazards and causes have been 
identified, a mathematical expression can be de-
veloped to quantify the forest fire risk. A fire risk 
expression may be developed to quantify forest 
fire risk on short time scales (days) or much longer 
time scales (months and seasons).  

  
A short-term fire risk assessment tool should 

be based upon natural elements that may poten-
tially change very rapidly. Specifically, the factors 
that affect the moisture content of forest vegeta-
tion are critical to understanding the risk that that 
vegetation has to burning (Dudley 2003). Fine for-
est fuels such as grasses, leaves, and needles 
may experience sudden changes in their moisture 
content. Contrastingly, forest fuels such as me-
dium-sized sticks and branches and larger logs 
undergo moisture changes over a longer period of 
time on the scales of weeks and months (Brown 
and Davis 1973). Climate and weather aspects 
may combine to enhance vegetation drying. For 
example, long-term drought conditions combined 
with hot and dry weather spanning several days or 
a week may be sufficient to allow a wildfire to burn 
easily once ignition occurs. Because it is difficult to 
know the actual vegetation or fuel moisture con-
tent, it is often estimated through the use of mete-
orological variables (Viegas et al. 2000), or it is 
approximated through the use of remotely sensed 
data and techniques (Paltridge and Barber 1988, 
Lopez et al. 1991, Illera et al. 1996). * Corresponding author address: Randall P. Ben-

son, South Dakota School of Mines and Technol-
ogy, Department of Atmospheric Science, 501 
East Saint Joseph Street, Rapid City, South Da-
kota, 57701, email: randall.benson@sdsmt.edu 

  
This research explores the concept of devel-

oping a single index or mathematical measure to 
quantify the daily risk of either a lightning or hu-
man-caused wildfire. A single equation denoting 
the total probability of a wildfire occurring is devel-
oped for the typical wildfire season in the Black 
Hills (March – October). 



 Multiple logistic regression is used to deter-
mine the daily probability of a lightning and/or hu-
man-caused wildfire to occur in the Black Hills Na-
tional Forest (Figure 1). The candidate predictors 
are a combination of weather, fuels, National Fire 
Danger Rating Systems (NFDRS) fire danger indi-
ces, and periodic calendar functions. In the equa-
tion development it was assumed that lightning 
and human-caused fires occur independently of 
each other.  

Figure 2. The annual distribution of human and 
lightning-caused wildfires in the Black Hills Na-
tional Forest (Andrews and Bradshaw 1997). 

Figure 3. Lightning strikes in the Black Hills 
region by month (Vaisala, Inc.). 
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Figure 1. The Black Hills National Forest of 
Wyoming (left) and South Dakota (right) indi-
cating the name and location of the RAWS 
stations used in this study. 

 
During the period 1994-2003, lightning caused 

approximately 60% of all wildfires annually (Figure 
2) in the Black Hills of South Dakota and Wyoming 
(Andrews and Bradshaw 1997). The mountain and 
plains topography act as an elevated heat and 
moisture source allowing convection to occur eas-
ily during the warm season. The Hills are dome 
shaped with a northwest to southeast oriented axis 
and exhibit an elevation change from the adjacent 
plains to the tallest peak of approximately 4,000 
feet. Lightning activity (Vaisala, Inc.) begins in 
March and continues into October (Figure 3) with 
the most significant rainfall occurring in May and 
June (Dennis et al. 1966, Kuo and Orville 1972).  

  
 
 

 
The ability to predict lightning occurrence and 

whether a lightning strike will generate a forest fire 
remains a complex daily challenge. Lightning flash 
rates of both in-cloud and ground flashes typically 
vary widely from one storm to the next although 
Peckham et al. (1984) did find that the average 
ground flash rate was higher in multicell storms 
than in isolated cells in Florida.    

  
2.  PREDICTAND, PREDICTORS, METHODS 

  
A statistical tool to estimate the daily probabil-

ity of one or more lightning strikes occurring is 
used in this study as a predictor in the probability 
calculation of a lightning-caused wildfire. Multiple 
logistic regression is used to formulate the equa-
tions to predict a lightning strike and is based upon 
45 prospective thermodynamic predictors (Bolton 
1980) derived from the daily 1200 UTC upper air 
radiosonde in Rapid City. 



Equation predictors for the probability of a 
lightning fire (PLF) are comprised of daily 1 pm 
local time NFDRS calculated indices including the 
following: Spread Component (SC), Burning Index 
(BI), Energy Release Component (ERC), Ignition 
Component (IC), and the Keetch Byram Drought 
Index (KBDI). In addition, dead fuel moisture time-
lag terms are utilized as predictors. A fuel's time-
lag is proportional to its diameter and is commonly 
defined as the time it takes a fuel particle to reach 
two-thirds of its way to equilibrium with its local 
environment. Dead fuels in NFDRS fall into four 
groups or classes: 1-hr, 10-hr, 100-hr, and 1000-hr 
fuel moisture timelag fuels (Deeming et al. 1977).  
The herbaceous fuel moisture (FMH) value, which 
is the calculated value of the approximate mois-
ture content of live herbaceous vegetation ex-
pressed as an oven dry weight of the original 
sample, is used as another predictor.  

  
The meteorological predictors used in the lo-

gistic regression equations are taken from the 
daily 1 pm local time observations of temperature, 
relative humidity, wind speed and wind direction. 
The maximum and minimum temperature and 
relative humidity values are taken from the previ-
ous 24-hr period ending at 1 pm local time. The 
amount of rainfall in the previous 24-hr period and 
the duration of rainfall (recorded automatically by a 
Remote Automated Weather Station or RAWS) 
are also used as candidate predictors. Previous 
day lightning strike activity is used as a binary 
predictor in the equation set. 

  
The logistic regression equations were calcu-

lated for periods of two months beginning in March 
and concluding in October. The predictand  or re-
sponse variable (lightning or human-caused wild-
fire occurring in the Black Hills National Forest) 
was used in the equation development to gauge 
the relationship of fire activity amongst three 
RAWS stations located in the Northern, Central, 
and Southern Hills (Bear Lodge, Nemo, and Red 
Canyon, Figure 1). In addition, a separate set of 
monthly equations was developed using the aver-
age of the three RAWS stations fuels, weather, 
and NFDRS indices. For the response variable, a 
binary “1” was used to designate at least one fire 
occurring daily and a “0” was used to indicate no 
fires occurring for the response variable. 

A backward stepwise logistic regression tech-
nique was used to identify which of the possible 
predictors related most significantly to lightning or 
human-caused wildfires. A statistical software pro-
gram (MINITAB) was used to formulate the binary 
logistic regression equations. This method utilizes 
the p-value (Pearson 1900), which is also known 
as the rejection level, to determine which of the 
predictors should be eliminated. The p-value is a 
probability ranging from 0 to 1 and indicates by a 
small value that the relationship between the pre-
dictor and the predictand is not likely to be a coin-
cidence and that the predictor may have statistical 
significance. In the backward stepwise regression 
technique, the predictor with the largest p-value 
was deleted first and this procedure was continued 
until only the smallest p-values (< .05) remained. 
The final logistic regression equation (Wilks 1995) 
takes the following form, 
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where y is the predicted probability of occurrence, 
b0 is the intercept, bk are the coefficients for the 
predictors, xk and k is the number of predictors.  

  
Nearly 40% of all the wildfires occurring in the 

Hills from the period 1994-2003 are caused by 
human activity (Figure 2). The majority of these 
wildfires are caused by escaped campfires (An-
drews and Bradshaw 1997). It becomes obvious 
after analyzing the human-caused fires that there 
is a weekly (Figure 4) and seasonal influence 
(Figure 5) to the number of ignitions. Martell et al. 
(1989) used periodic functions of Julian calendar 
dates to incorporate seasonal variation into logistic 
regression equations that also used two of the six 
components of the Canadian Forest Fire Danger 
Rating System (CFFDRS), the Fine Fuel Moisture 
Code (FFMC), and the Build-Up Index (BUI). 
These indexes measure the moisture content of 
the upper-most layers of the forest floor of both 
live and dead fuels. The authors determined early 
in their study that human-caused wildfire exhibited 
seasonal variation. To account for this seasonality, 
they incorporated trigonometric sine and cosine 
functions to simulate periodicity within an assumed 
140-day fire season.    

 
 
 
 



 
The predictors used to formulate the equations 

in this research for the Probability of Human-
Caused Wildfire (PHF) were the daily 1 pm local 
time observations of temperature, relative humid-
ity, wind speed, and wind direction from the three 
RAWS stations in the northern, central, and south-
ern Hills. Additionally, a Julian day function was 
added to account for fires occurring in clusters at 
various times of the year. In the ten-year database 
(1994-2003) of human-caused fires, a binary “1” 
was used when there was a fire recorded in two or 
more of the Julian days on record. Otherwise, a 
“0” was recorded. The day of the week was also 
used as a predictor for human-caused fires. The 
trigonometric sine function was used with the day 
of the week in a seven-day period and of the form, 

  
( )[ ] dcxbay ++= sin*  

where a is the amplitude, b is the period, x is the 
fractional day of the seven-day week, c is the hori-
zontal phase shift and d is the vertical phase shift. 
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Assuming independence of lightning-caused 

and human-caused fires, we may observe the 
probability of a wildfire of any type is the following, 

 
PAF = 1 − (1 − PHF)(1 − PLF) 

  
where PAF is the probability of all fires, PHF is the 
probability of human fires, and PLF is the probabil-
ity of a lightning fire. 

Figure 4. The human-caused fires occurring in   
The model equation used to obtain PAF for 

each RAWS location may be run operationally, 
given the probability of a lightning strike, several 
persistence variables, weather and fuels data, and 
forecast daily NFDRS output indices. For each 
RAWS station a probability is given for each type 
of wildfire. Then, the calculated probabilities are 
normalized according to their ranked historical 
values to determine a subjectively designed adjec-
tive rating for the likelihood of fire at that location. 
The adjective rating was created to resemble that 
of the NFDRS daily rating for convenience and are 
designated by ranked historical probabilities for 
each RAWS as follows: Extremely High, Very 
High, High, Moderate, Low, and Extremely Low. 

the Black Hills National Forest by day of the 
week (Andrews and Bradshaw 1997).  
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3.  RESULTS, DISCUSSION, CONCLUSIONS Figure 5. Human-caused wildfires occurring in 

the Black Hills National Forest by month (An-
drews and Bradshaw 1997). 

  
As a first check in verifying the predictability of 

the equations, the daily calculated historical prob-
abilities were ranked for each RAWS station (and 
the three-station average) and were separated 
and normalized into quartiles (1, 2, 3 and 4) based 
on the maximum and minimum probabilities for 
each two-monthly calendar period. Quartiles were 
used for the sorted historical probabilities for all 
fires, lightning fires, and human-caused fires and 
for each bi-monthly calendar period. A percentage 
of days with fire compared to the total number of 
days is shown in column 4 of Figure 6 for each 
quartile for the months of Jul-Aug as an average 
for each RAWS station (including the three-station 
average) for each wildfire category (all fires, light-
ning fires, and human-caused fires).   

  
The results shown in Figure 6 indicate that for 

quartile 1 the outcomes indicate an expected re-
sult. When the calculated probability is high for a 
specific wildfire type (quartile 1), there is frequently  



a high occurrence of observed wildfire. The excep-
tion occurs at times when there is insufficient data 
to formulate a complete analysis (quartile 1 MAY-
JUN in Figure 6 for LFD). It is worth noting that for 
the months of JUL-AUG, which corresponds to the 
peak in lightning activity (Figure 2) for the Hills 
(Vaisala, Inc.) , the percentage of calculated light-
ning fire days to actual lightning fire days is the 
highest for any of the time periods.  

 
Figure 7 indicates that averaging the daily fu-

els, weather, and NFDRS indices may be more 
useful in predicting both all-fire days and lightning-
fire days. It is reasonable to assume that because 
the RAWS stations are in close proximity to each 
other, that many of the fuels and weather condi-
tions were often similar. The reason for the large 
percentage of calculated human-caused fire days 
compared to actual human-caused fire days at 
NEMO is unclear. Perhaps the high percentage is 
attributed to its central location in the Black Hills 
(Figure 1). 

  
Conceptually, the method of being able to 

predict wildfire activity from historical wildfires, 
predicted lightning activity, current observations of 
fuels and weather data and with the inclusion of 
variables attributable to human-caused wildfires 
seems plausible. With the assumption that human 
and lightning-caused wildfires occur independently 
of each other and that there is at least some dif-
ferences of the mechanisms of ignition between 
each wildfire type, it appears possible that a single 
statistical index could be used to estimate the daily 
likelihood of wildfire. Future work related to this 
study will be to explore the use of the Poisson 
probability distribution function to determine PAF, 
PHF, and PLF for multiple numbers of fires. 

   

RAWS 
SUMMARY       
MAY-JUN AVG AFD/TOTD MIN MAX 

1 0.672 0.588 0.833 
2 0.473 0.440 0.511 
3 0.324 0.288 0.370 
4 0.111 0.094 0.130 

MAY-JUN HFD/TOTD MIN MAX 
1 0.527 0.500 0.577 
2 0.358 0.327 0.405 
3 0.254 0.206 0.303 
4 0.072 0.063 0.081 

MAY-JUN LFD/TOTD MIN MAX 
1 0.406 0.000 1.000 
2 0.485 0.400 0.625 
3 0.254 0.194 0.290 
4 0.052 0.045 0.060 

JUL-AUG AVG AFD/TOTD MIN MAX 
1 0.756 0.664 0.857 
2 0.591 0.538 0.614 
3 0.358 0.314 0.389 
4 0.196 0.158 0.216 

JUL-AUG HFD/TOTD MIN MAX 
1 0.611 0.333 1.000 
2 0.439 0.392 0.500 
3 0.249 0.117 0.336 
4 0.065 0.032 0.079 

JUL-AUG LFD/TOTD MIN MAX 
1 0.740 0.671 0.917 
2 0.565 0.500 0.642 
3 0.290 0.245 0.322 
4 0.170 0.140 0.181 

SEP-OCT AVG AFD/TOTD MIN MAX 
1 0.690 0.542 0.765 
2 0.395 0.355 0.455 
3 0.235 0.198 0.261 
4 0.069 0.065 0.075 

SEP-OCT HFD/TOTD MIN MAX 
1 0.756 0.600 0.875 
2 0.382 0.200 0.500 
3 0.244 0.179 0.303 
4 0.051 0.049 0.055 

SEP-OCT LFD/TOTD MIN MAX 
1 0.715 0.529 0.846 
2 0.300 0.286 0.344 
3 0.165 0.135 0.217 
4 0.026 0.021 0.029 

Figure 6. The percentage of days summary of 
each wildfire type separated by quartiles for 
each of the three RAWS stations including the 
RAWS station’s average. Column 1 is the quar-
tile for the percentage range. Column 2 is the 
average (AVG) percentage of all fire days 
(AFD) for each RAWS and the average RAWS 
compared to all the days for that quartile. Col-
umn 3 is the calculated minimum percentage 
value for each quartile of fire days compared to 
all days for each RAWS and the average 
RAWS. Column 4 is the calculated maximum 
percentage of fire days for each quartile. HFD 
= human fire days. LFD = lightning fire days. 
TOTD = total days. 
  



 

Upper Quartiles RAWS Averages 

AFD/TOTD PAF 3 AVG 0.619 

HFD/TOTD PHF NEM 0.568 

LFD/TOTD PLF 3 AVG 0.601 

 

 
 

4.  ACKNOWLEDGEMENTS 
  
I would like to thank Dr. Frank Matejcik from 

the Department of Industrial Engineering at the 
South Dakota School of Mines and Technology for 
his help in the statistical equation development. 
Also, I would like to express my appreciation for 
the help of Matt Bunkers, Science and Operations 
Officer for the National Oceanic and Atmospheric 
Administration’s National Weather Service office in 
Rapid City for his help in building the lightning 
prediction tool. Lastly, I would like to thank Don 
Latham (retired USFS) for his help in the method-
ology used in this study. The position of fire mete-
orologist is funded by the State of South Dakota. 

  
5.  REFERENCES 
  
Andrews K., and L.S. Bradshaw, 1997: “Fires: Fire 
information retrieval and evaluation system – a 
program for fire danger rating analysis.”  USDA 
Forest Service, Intermountain Research Station 
General Technical Report INT-367. 64 pp. 
(Ogden, UT) 
  
Bolton, D., 1980: The computation of equivalent 
potential temperature. Mon. Wea. Rev., 108, 
1046-1053. 

  
Brown, A.A., and K.P. Davis, 1973: “Forest Fire: 
Control and Use.”  McGraw-Hill, New York. 
  

Carter, G.M., and J.E. Rolph, 1975: New York City 
fire alarm prediction models. II. Alarm rates. R-
1215-NYC. The New York City Rand Institute, 
New York. 
  
Chuvieco, E., and R.G. Congalton, 1989: Applica-
tion of remote sensing and geographic information 
systems to forest fire hazard mapping. Remote 
Sensing of the Environment 29, pp. 147-159. 
  
Cox, G., 1995: “Combustion Fundamentals of 
Fire.”  Academic Press, London. 
  
Deeming, J.E., R.E. Burgan, and J.D. Cohen, 
1978: The National Fire-Danger Rating System - 
1978. USDA, For. Serv. Gen. Tech. Rep. INT-39. 
Intermt. For. and Range Exp. Sta., Ogden, UT. 63 
p. 

Figure 7. An average of the top two quartiles 
for March through October of the calculated 
percentage of wildfire days versus the actual 
number of wildfire days for the best-
performing RAWS and/or the three-station 
average. AFD = All fire days. HFD = Human 
Fire Days. LFD = Lightning Fire Days. TOTD 

  
Dennis, A.S., H.E. Hart, J.B. Niederauer and C. 
Lundy, 1966: Upper air climatology of Rapid City, 
South Dakota. Rept. 66-3, Inst. Atmos. Sci., South 
Dakota School of Mines and Technology, 40 pp. 
  
Dudley, M., 2003: “Wildland Fire Danger Estima-
tion and Mapping – The Role of Remote Sensing 
Data.” World Scientific Publishing Co., Singapore. 
  
Illera, P., A. Fernandez, A. Calle, and J.L. Casa-
nova, 1996: Temporal evolution of the NDVI as an 
indicator of forest fire danger. International Journal 
of Remote Sensing, 17, 1093–1105. 
  
Kilzer, F.J., and A. Broido, 1965: Speculations on 
the nature of cellulose pyrolysis. Pyrodynamics, 2, 
151-163. 
  
Kuo, J. T., and H.D. Orville, 1972: A radar clima-
tology of summertime convective clouds in the 
Black Hills. Journal of Applied Meteorology, 12, 
359-368. 
  
Lopez, S., F. Gonzalez-Alonso, R. Llop, and J.M. 
Cuevas, 1991: An evaluation of the utility of 
NOAA-AVHRR images for monitoring forest fires 
risk in Spain. International Journal of Remote 
Sensing, 12, 1841–1851. 
  
Martell, D.L., E. Bevilacqua, and B.J. Stocks, 
1989:  Modeling seasonal variation in daily people-
caused forest fire occurrence. Can. J. For. Res., 
19, 1555-1563. 
  
Nickey, B.B., and C.B Chapman, 1979: Evaluating 
fire prevention effectiveness through a probability 
model. Fire Technol., 15, 291-306. 



  
Paltridge, G.W., and J. Barber, 1988: Monitoring 
grasslands dryness and forest fire potential in Aus-
tralia with NOAA/AVHRR data. Remote Sensing of 
Environment, 25, 381–394. 
  
Pearson, K., 1900: On the criterion that a given 
system of deviations from the probable in the case 
of a correlated system of variables is such that it 
can be reasonably supposed to have arisen from 
random sampling. Philosophical Magazine Series 
5, 50, 157–175. 
  
Peckham, D.W., M.A. Uman, and C.E. Wilcox, Jr., 
1984: Lightning phenomenology in the Tampa Bay 
Area. J. Geophys. Res., 89, 11, 789-805. 
  
Susott, R.A., 1984: “Heat of Preignition of Three 
Woody Fuels Used in Wildfire Modeling Re-
search.”  Res. Note INT-342. USDA Forest Ser-
vice, Intermountain Forest and Range Experiment 
Station, Ogden, Utah. 
  

Vaisala, Incorporated. Remote Sensing Division, 
Tucson, AZ, U.S.A. 
  
Viegas, X., G. Bovio, A. Ferreira, A. Nosenzo, and 
B. Sol, 2000: Comparative study of various meth-
ods of forest fire danger evaluation in southern 
Europe. International Journal of Wildland Fire, 9, 
235–246. 
  
Walker, W.E., J.M. Chaiken, and E.J. Ignall, (Edi-
tors), 1979: Fire department deployment analysis: 
a public policy case study – the Rand fire project. 
North Holland, New York.  
  
Wilks, D.S., 1995: Statistical Methods in the At-
mospheric Sciences. Academic Press, 467 pp. 
  
 


	Upper Quartiles RAWS Averages
	AFD/TOTD


