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1. Introduction 
1

      Ensemble Kalman Filter (EnKF) methods 
have been shown to be effective data assimilation 
schemes:  Houtekamer et al. (2005) found the 
performance of an EnKF scheme to be 
comparable to that of an operational 3D-Var 
scheme when assimilating real observations into 
the CMC GEM grid point model.  Using another 
EnKF scheme, Whitaker et al. (2004) obtained a 
better mid-troposphere reanalysis from surface 
pressure observations than with the NCEP 3D-Var. 
The Local Ensemble Kalman Filter (LEKF), 
another variant of the EnKF, was introduced in Ott 
et al. (2002; 2004) and was shown to be accurate 
and efficient when assimilating simulated 
observations of model variables on the NCEP GFS 
model in Szunyogh et al. (2005).  In this study, 
the LEKF is replaced by a more efficient but 
equivalent implementation (Hunt, 2005), the Local 
Ensemble Transform Kalman Filter (LETKF). Here, 
we assimilate simulated model grid point 
observations and simulated rawinsonde 
observations into the NASA fvGCM model.   

The LETKF algorithm is briefly described in 
Section 2, while its implementation on the fvGCM 
model is explained in Section 3. Section 4 present 
data assimilation results for the “perfect model” 
scenario. In these experiments, the NASA fvGCM 
is run for two months without assimilating 
observations to obtain a time series of "true" 
atmospheric state.  Simulated noisy grid-point 
and rawinsonde observations of this truth are then 
assimilated with the LETKF. The performance of 
data assimilation system is evaluated by 
comparing the analysis state to the truth.  Further 
verification of the scheme is obtained by 
comparing the performance of the LETKF to that of 
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the NASA PSAS operational data assimilation 
scheme.  A summary of the results which indicate 
the potential applicability of LETKF to assimilate 
real rawinsonde and AIRS observations is 
presented in Section 5. 

 
2. Local Ensemble Transform Kalman Filter 
 

Data assimilation techniques find the best 
estimate of the state of the atmosphere by 
combining information from observations and 
previous forecasts, called the background. In 
ensemble data assimilation techniques, the 
background information is derived from an 
ensemble of k forecasts, the ith of which is 
denoted by xb(i).  The background state, xb , is 
estimated by the ensemble mean of these k 
forecasts,             
 
Similarly, the background error covariance matrix, 
Pb, is estimated by the sample covariance of the 
ensemble forecasts, that is,  
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where T denotes the matrix transpose and Xb is 
the matrix of ensemble perturbations with the ith 
column given by . 

Following the derivation of Hunt (2005), with 
the above formulation of the background state, it 
can be shown that the Kalman Filter equations 
yield the following analysis equation: 
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In these equations, ax  is the mean analysis 
state and Pa is the corresponding error covariance 
matrix and is the vector of observations. oy ( )·h  
is the operator mapping the model state variables 
into observation space and the ith background 
ensemble member in observation space is 
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is the mean background state in observation 
space.  Finally, bY is the matrix of ensemble 
perturbations in observation space; that is, its ith 
column is given by bb(i)b(i) yy=Y − . 

Similarly to the Ensemble Transform Kalman 
Filter of Bishop et al. (2001), the LETKF assumes 
that the analysis error covariance is in the space 
spanned by the background ensemble.  Thus, the 
error covariance takes the form 

aTaa XX)(k=P 11 −−                    (4) 

where the ith column of the analysis ensemble 
perturbation matrix is given by the difference 
between the ith analysis ensemble member, xa(i), 
and the analysis mean state, ax .  From the 
above Kalman Filter equations, it is apparent that 
the matrix of ensemble perturbations is given by 

[ 2/111 −−− bbTba YRY+)I(kX=X ]          (5)       

The above formulation for the perturbation matrix 
can be used to find the ith analysis ensemble 
member by                   . 
LETKF is advantageous as it provides an optimal 
update for each ensemble member.  Solving all 
the equations in the space spanned by the 
background ensemble members greatly reduces 
the computational cost involved in solving the 
Kalman Filter equations. Rather than solving for 
the entire high-dimensional state vector, the 
LETKF solves matrix equations of the same 
dimension as the relatively small number of 
ensemble members, k. 
    In the LETKF, following the concept of Ott et 
al. (2004), the state at each grid point is updated 
using the background and observations only within 
a distance from that grid point.  This localization 
greatly reduces the cost of the assimilation by 
reducing the dimension of the LETKF matrix 
equations.  Furthermore, because the state is 
updated independently at each grid point, the 
LETKF can process each grid point in parallel.  
Another benefit of the localization is that it filters 
spurious correlations between distant locations.  
 
3. Implementation on fvGCM model 
 
3.1 Forecast model 
 

The NASA fvGCM is an operational weather 
forecasting model. The version employed in our 

experiments has 72 zonal grid points, 46 
meridional grid points, and 55 vertical levels. We 
note that this resolution is much coarser than that 
used operationally, but it allows for a large number 
of numerical experiments on our available 
computational resources. 

 
3.2 Observations 
 

The observations are obtained by adding zero 
mean, Gaussian distributed noise with a 
prescribed variance to the true state. 

Two sets of observations are generated to 
test the performance of LETKF with the fvGCM. 
The first set of observations is generated at model 
grid points. For this set of observations, the 
observed variables include the model variables of 
surface pressure, scaled potential temperature, 
zonal wind and meridional wind. The standard 
deviation of the observational errors for these 
model variables are 1hPa, 0.04K (roughly 1K in 
temperature), 1.1m/s, and 1.1m/s respectively. 
The other set of observations simulate rawinsonde 
observations.  These observations include values 
of zonal wind, meriodinal wind, and geopotential 
height at real rawinsonde locations. The standard 
deviation of these observations is the same as 
those used operationally in PSAS, the operational 
3D-Var assimilation scheme of NASA. 

 
3.3 Numerical experiments 
 

In the assimilation experiments carried out 
with grid point observations, the initial analysis 
cycle begins at 1800 UTC on 16 December 2002, 
and the true state of 0000 UTC at 15 Jan 2003 is 
chosen as the initial analysis mean state. In the 
assimilation experiments carried out with 
simulated rawinsonde observations, the initial 
analysis cycle starts from 1800 UTC on 01 Jan 
2003, and the initial analysis mean state is the 
PSAS analysis at the same time. The initial 
analysis ensemble members are obtained by 
adding normally distributed noise to the mean 
analysis. The standard deviation of the analysis 
ensemble perturbation is the same as the standard 
deviation of the observational noise.  

We also test the sensitivity of the analysis 
results to the observational coverage. In these 
experiments 100%, 30%, and 11% percent of the 
grid points are observed. In the two partial 
coverage cases, the locations observed are 
randomly chosen from all grid points. At the 
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chosen locations, all variables are observed at all 
model levels every six hours. We also test the 
sensitivity of the analyses to the observational 
frequency. In these experiments, the grid point 
observations are assimilated at only every twelve 
hours. The number of ensemble members is 40 in 
all experiments presented here. 

In order to compensate for sampling errors 
and the effects of nonlinearities in the evolution of 
the estimation errors, a multiplicative variance 
inflation scheme is used (Anderson and Anderson 
1999). In the grid point observation assimilation 
experiments, 8% inflation is used at each level. In 
the rawinsonde observation assimilation, the 
inflation factor varies with the vertical levels, such 
that the inflation factor is increased at the highest 
model levels. The local patch size used for 
localization depends on the observational 
coverage, the local patch is larger when the 
observations are sparser. 

 
4. Results 
 
4.1 Sensitivity to the observational spatial 
coverage 
 

For the NCEP GFS model, Szunyogh et al. 
(2005) showed that the Local Ensemble Kalman 
filter could perform well even when observations 
were assimilated at only 2% of the model grid 
points.  To test the implementation of the LETKF 
on the NASA fvGCM model, we test the 
performance of the analysis for different 
observation densities. Fig. 1 shows the time 
evolution of the 500hPa zonal wind and 
temperature RMS error averaged over the globe. It 
shows that the RMS error of the zonal wind is 
more sensitive to the observation density than the 
temperature, while the spin-up time is shorter for 
the zonal wind. But for the zonal wind, the 
difference in the RMS errors between the 30% and 
11% coverage cases is only 0.2 m/s after the initial 
transient period. The difference between the RMS 
error of the temperature analysis at the 30% and 
11% observational coverage is even smaller. At 
11% observational coverage, the analysis RMS 
error drops below the observation error after a 
longer spin-up time. This conclusion is consistent 
with the results of Szunoygh et al. (2005).  

 

 

A 
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Fig. 1 Time evolution of the 500hPa analysis RMS error 
for zonal wind (A) and temperature (B) .The black line is 
the observation error, while the red, green and blue line 
show the analysis error for  100%, 30% and 11% 
observational coverage. 
 
4.2 Sensitivity to analysis frequency 
 

We test the sensitivity of the analysis results 
to the observational frequency at 30% 
observational coverage. Fig. 2 shows the time 
evolution of analysis RMS error for the 500hPa 
zonal wind (A) and temperature (B) for the 6-hour 
(red line) and 12-hour (green line) observational 
frequency. The zonal wind is more sensitive to the 
analysis interval than the temperature, but the 
performance of the LETKF with a 12-hour 
observation is competitive to that with a 6-hour 
observational frequency. The RMS error differs 
only by about 0.1 for zonal wind beyond the 
spin-up time. The RMS error for temperature is 
very similar for the two different analysis 
frequencies. 

 

 



 

 
Fig.2 The global averaged 500hPa analysis RMS error 
(y-axis) as function of time (x-axis) for zonal wind (A) 
and temperature (B). The black line is the observation 
error, the red (green) line show the results for the 6-hour 
(12-hour) assimilation frequency,  
 

The analysis errors strongly depend on the 
geographical location. The RMS errors in the zonal 
wind are the smallest over the mid-latitudes 
(25ºN/S-35ºN/S) at the lowest a few levels. The 
results for the 6-hour analysis frequency are 
almost uniformly better than that for the 12-hour 
analysis frequency, but the magnitude of the 
difference is small (Fig. 3B). The results for the 
temperature are similar (not shown). 
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Fig. 3 Zonal average of the time mean zonal wind 
analysis error for 12-hour assimilation frequency (A), 
and the difference between the error at 6-hour analysis 
and 12-hour analysis frequency. The time average of the 
“true” zonal wind is also shown (contour).   
 
4.3 Assimilation of simulated rawinsonde 
observations 
 

The RMS error averaged over the Northern 
Hemisphere will be used to compare the 
performance of LETKF and PSAS.  Compared 
with PSAS, the LETKF RMS errors are much 
smaller for both the wind and temperature beyond 
the spin-up time (Fig. 4). The RMS error difference 
between the two schemes is larger for the zonal 
wind than for the temperature (Fig.4). The RMS 
error difference is about 0.4 for zonal wind beyond 
the spin-up time, which is about one seventh of the 
observational error standard deviation (2.7m/s for 
500hPa zonal wind observations). The spin-up 
time, about 6 days, is shorter for the zonal wind, 
which is consistent with the conclusion we drew 
from the experiments with the grid point 

 



observations.  
 

 

 
Fig.4 The RMS error for both LETKF (red line) and 

PSAS (blue line) of the 500hPa zonal wind (A) and 

500hPa temperature (B). 
 
    Fig.5 shows the time mean (averaged over the 
last ten days analysis cycle (from 22 Jan 2003 to 
31 Jan 2003) of the RMS error over the Northern 
Hemisphere. It is obvious that the LETKF analyses 
are clearly more accurate than the PSAS analyses 
for both the zonal wind and temperature at all 
levels between 1000hPa and 100hPa.  

The RMS error of zonal wind does not change 
much up to 400hPa, and the RMS error in the 
temperature decreases with height up to 400hPa 
(Fig. 5). The changes of RMS error with height 
closely follow the changes in the observational 
coverage and observational error.  Table 1 lists 
the observational error for different observation 
types and the number of observations at 0000 
UTC at the different vertical levels.  The zonal 
wind observation error increases with height up to 
300hPa, while the observation coverage increases 
at the same time. Thus, the contributions of these 
two factors to the zonal wind RMS error cancel 
each other. The temperature is highly related with 

geopotential height observations. The observation 
error of geopotential height monotonically 
increases with height.  Thus, the effect of the 
observation coverage dominates for the 
temperature RMS error variation.   
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Fig. 5 Time mean of the RMS error of zonal wind (A) 
and temperature (B) averaged over Northern 
Hemisphere (the blue line is the error for PSAS, and the 
red line is the error for the LETKF) with simulated 
rawinsonde observation assimilation. 
 
Unit 
(hPa) 

U 
(m/s) 

V 
(m/s) 

H 
(m) 

Total 

obs 

number 

1000 2.0 2.0 5.4 607 
850 2.2 2.2 5.6 1946 
700 2.3 2.3 6.2 2057 
500 2.7 2.7 8.6 2083 
400 3.2 3.2 10.8 2038 
300 3.4 3.4 12.8 1934 
250 3.4 3.4 13.5 1529 
200 3.3 3.3 14.5 1499 
150  2.7 2.7 16.3 1460 
100 2.7 2.7 19.3 1402 
Table 1 Observation errors of different variables as 
function of vertical levels; Number of Observation at 
0000 UTC as function of vertical levels (from NASA- 
PSAS). 
 

Compared with PSAS, the LETKF analysis is 
more accurate almost everywhere except for the 
very high latitudes in the Southern Hemisphere 
(Fig. 6 B, Fig. 7B). Furthermore, the LETKF 
performs significantly better in the tropical region 
and mid-latitude of Southern Hemisphere than 
PSAS. The RMS error difference is larger for the 

 



zonal wind (Fig. 6 B, Fig. 7B). The RMS errors are 
smaller in the mid-latitude of Northern Hemisphere 
and the tropical region for both variables (Fig. 6 A, 
Fig. 7A). 

We recall that all results reported here were 
obtained by 40-member ensembles. We expect 
that the advantage of the LETKF over PSAS would 
be even larger if more ensemble members were 
added. 

 

 

 
Fig. 6 Zonal average of the time-mean (average over 
the last 10 days) zonal wind analysis RMS error for the 
LETKF (A), and the RMS error difference between the 
PSAS and LETKF analysis is shown in B. The zonal 
average of the “true” time-mean zonal wind is shown by 
contours. 
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Fig. 7 Zonal average of the time-mean (average over 
the last 10 days analysis cycle) temperature analysis 
RMS error for both LETKF (A), and the RMS error 
difference between PSAS and LETKF is shown in B. 
The zonal average of the “true” time-mean zonal wind is 
shown by contour. 
 
     The temperature RMS error is relatively large 
in the Tropopause (Fig. 6A). The Tropopause is 
approximately at 200hPa in January. Geographical 
distribution of errors shows that the RMS errors 
are small over tropical and mid-latitude regions 
even at the Tropopause (Fig. 8A). The LETKF 
scheme outperforms PSAS most significantly in 
the tropical region (Fig. 8B). This result is 
especially encouraging since the tropical region is 
usually much more difficult to forecast and get 
good analysis. 
 

 



 
Fig. 8 Time-mean of the RMS error in the analysis of 
temperature component at the 200hPa (shades). The 
“true” time mean horizontal temperature at the same 
level is shown by contours.  
 
5. Conclusion and discussion 
 

The LETKF is an accurate and 
computationally efficient data assimilation scheme. 
It takes only 5 minutes on a 20 cluster of 2.8 MHZ 
PC processes to do an analysis at 30% 
observational coverage with 40-ensemble 
members.    

Even in the case of sparse and less frequent 
observations, the LETKF can accurately assimilate 
grid point observations into the fvGCM model 
system. The sensitivity experiments show that the 
zonal wind analysis is more sensitive to the 
observational coverage and the observational 
frequency than the temperature.  However, the 
spin-up time for temperature is longer than for the 
zonal wind. 

 With only 40 ensemble members, the LETKF 
scheme outperforms NASA PSAS analysis at 
almost geographical locations. The advantage of 

the LETKF over PSAS is the largest in the Tropics. 
To further improve the performance of LETKF 

scheme, we are planning increase the number of 
the ensemble members to 60.  With this 
ensemble member, we expect to obtain the better 
estimates of the background mean and 
background error covariances, which may 
compensate for the inadequate observation 
coverage in the Southern Hemisphere. We are 
also planning assimilate real rawinsonde 
observations and AIRS data in the near future.  

A 
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