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1. INTRODUCTION

Relative dispersion indicates the process of distribution of
marked fluid particles around their instantaneous centre
of mass. For instance, the expansion of a puff of particles
is a typical phenomenon of relative dispersion.

A fundamental quantity in relative dispersion studies
is the mean square separation σ2

r between pairs of parti-
cles, which is a measure of the size of the puff. Based on
dimensional arguments, Obukhov (1941) proposed the
relationship σ2

r = Cr ε t3 for the inertial subrange of turbu-
lence, where ε is the mean dissipation of kinetic energy,
and Cr the Richardson-Obukhov constant, whose value
is still uncertain.

The original theory of Taylor (1921) refers to abso-
lute dispersion, i.e. it provides the standard deviation σy

of a distribution of particles with respect to a fixed origin,
in statistically homogeneous turbulent flow. Typically, σy

describes the length of the cross-wind arc spanned by a
plume for a virtually infinite sampling time as measured by
fixed samplers at a certain distance from the source, as-
suming constant mean wind direction. Note that σy does
not provide any information on the actual, instantaneous,
width of the plume, which is related to σr .

The application of Taylor’s theory to derive relative
dispersion standard deviations presents several difficul-
ties. Perhaps the most serious problem is that the auto-
covariance of relative velocity is a function of time, as well
as of the time lag. Thus its parameterizations, as well as
its experimental observations, are nontrivial tasks.

We derive a differential equation for σ2
r , which can

be solved numerically, and has an analytical solution in
the inertial subrange limit, consistent with Obukhov’s so-
lution. The derivation is based on the application of Tay-
lor’s (1921) statistical diffusion theory to relative disper-
sion, and on the definition of the turbulent kinetic energy
of separation.

Our theory predicts an analytical expression of Cr . It
also provides the definition of decorrelation time scale for
relative dispersion, which is shown to be the fundamental
quantity in the calculation of σ2

r , as opposed to the au-
tocorrelation function. The results are extended to finite
Reynolds number turbulence using relationships based
on a Reynolds number-dependent Lagrangian time scale.
Several predictions are compared to direct numerical sim-
ulations (DNS) and laboratory observations.
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2. THEORY

Position and velocity of a particle relative to the centre of
mass of a cluster are defined as y r = y−y and v r = v−v
respectively, where the overbar represents average over
all particles of the cluster. Averages over the ensemble of
realizations are represented by angled brackets.

The component of the mean square distance of the
particles from their respective instantaneous centre of
mass over an ensemble of realizations, along an arbitrary
y -axis, will be indicated as σ2

yr ≡
〈
y2

r
〉
, and the mean

square relative velocity as σ2
vr ≡

〈
v2

r
〉
.

σ2
yr satisfies the differential equation:

dσ2
yr

dt
= 2

〈
yr

dyr

dt

〉
= 2σ2

vr (t)
Z t

0
Rr (t, τ )dτ (1)

where the release time to = 0 for simplicity, and the au-
tocorrelation coefficient Rr of Lagrangian relative velocity
vr was defined as

Rr (t, τ ) =
〈vr (t)vr (t − τ )〉

σ2
vr (t)

, (2)

with 0 6 τ 6 t .
In the inertial subrange we can write (Franzese,

2003):

σ2
vr = σ2

v

(
σyr

σyL

)2/ 3

(3)

where σ2
v is the velocity variance, and σyL is a

length scale for the energy-containing eddies. Be-
cause the Lagrangian relative velocity structure function〈
[vr (t)− vr (t − τ )]2

〉
= Coετ , where the constant Co is

the same as in the Lagrangian absolute velocity structure
function, Eq. (2) becomes:

Rr (t, τ ) = 1− Coε

2σ2
vr (t)

τ − 1
2t

τ (4)

which defines the relative dispersion time scale

T−1
r =

Coε

2σ2
vr (t)

+
1
2t

(5)

2.1 Analytical solution

Substituting (4) in (1), we write the solution

σ2
yr = 2

Z t

0
σ2

vr (t)Tr (t)dt = Cyr εt3 for t 6 TrL (6)

σ2
yr = σ2

yL + 2σ2
v TL(t − TrL ) for t > TrL (7)

with Cyr = Cr / 6, where Cr is the well-known Obukhov-
Richardson two-particle relative dispersion constant, and
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FIG. 1: The evolutions of the absolute (i.e. Taylor’s σy ) and
relative [i.e. σyr from Eqs. (6) and (7)] dispersion variances for
an initial source σ2

yo = 10−9(σv TL)2. The straight lines are pro-
portional to t , t2 and t3.

TrL = βTL, where TL is the familiar Lagrangian time scale,
and β ≡ β(σv , σyL, TL).

After some algebra it is possible to obtain an explicit
relationship between Cr and Co:

Cr = αCo, with α ≡ α(σv , σyL, TL) (8)

The theory predicts α ' 1/ 11 if the large-eddy scale σyL

is taken equal to σy at the onset of the large-time Brow-
nian diffusion regime (i.e. when σy ∝

√
t) for a linear

autocorrelation function. Thus a typical value of Co = 7
gives Cr = 0.64. Figure 1 shows the absolute (i.e. Tay-
lor’s equation for σy ) and relative [i.e. Eqs. (6) and (7)]
dispersion variances normalized over (σv TL)2 for an initial
source σ2

yo = 10−9(σv TL)2. The figure shows the smooth
transition of σ2

yr between different scaling regimes, and
the consistency between σ2

y and σ2
yr at the asymptotic lim-

its. The correct large time behaviour of σ2
yr is a natural

result of the theory - not a consequence of ad hoc a priori
assumptions.

Tr in the inertial subrange can be expressed as:

Tr = 2t/ (1 + 4α−1/ 3) ' 0.2t (9)

The linear dependence of Tr on t implies that Rr (t, τ )
is a function of the single variable τ /t . The predicted
Rr (t, τ ) = exp(−τ /Tr ) as a function of τ /t is plotted in fig-
ure 2 along with the results of the experiments in two di-
mensional turbulence reported in Jullien et al. (1999). It
can be seen that the predicted dependence of Rr (t, τ ) on
τ /t is well supported by the observations.

3. REYNOLDS NUMBER EFFECTS

Sawford (1991) found that the effective value of Co as a
function of the Taylor-scale Reynolds number Reλ is well
approximated by:

C̃o = Co/ (1 + 7.5C2
o Re−1.64

λ ) (10)

where C̃o is the value of Co at finite Reλ, and Co was
estimated to be about 7 based on comparisons with DNS
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FIG. 2: Relative velocity autocorrelation function Rr (t, τ )

data. As a consequence of Eq. (8), the dependence of Cr

on Reλ is simply written as:

C̃r = αCo/ (1 + 7.5C2
o Re−1.64

λ ) (11)

The data from the experiments in grid turbulence by
Ott and Mann (2000), and from the DNS of Ishihara and
Kaneda (2002), Boffetta and Sokolov (2002) and Biferale
et al. (2005) are reported in figure 3 along with Eq. (11).
Note that experimental and numerical estimates of Cr are
at present still uncertain, and a definitive conclusion on
the best estimate of Cr cannot be drawn from the avail-
able data.
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FIG. 3: Observed, simulated and predicted values of Cr as a
function of Reλ

4. CONCLUSIONS

Equations for mean square relative separation have been
derived from first principles. The equations are consistent
with Taylor’s (1921) absolute dispersion theory, and with
Obukhov’s (1941) dimensional analysis.

The simplicity of the approach allows for a detailed
analysis of dispersion dynamics, including the comple-
mentary process of plume meandering. Several quanti-
ties specific to relative dispersion, such as the relative ve-
locity autocorrelation function Rr , the relative dispersion
time scale Tr , and the relative separation energy σ2

vr are



identified. These variables have been recently applied to
define the dissipation of concentration fluctuations in PDF
micromixing models of dispersion (Cassiani et al., 2005).

The results are extended to different Reynolds num-
bers using relationships based on Sawford’s (1991) defi-
nition of a Re-dependent Lagrangian time scale.
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