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1. INTRODUCTION ' 
 

Because source information is not always available 
for airborne contaminants, source characterization is an 
important capability in air quality analysis. The purpose 
of source characterization is to determine the locations, 
times, and strengths of one or more emissions. Once a 
source is characterized, future releases from the source 
may be prevented, or at the very least modeled to 
predict their potential harm to society. 

The tools currently available for this task include 
both forward and backward models. Output from 
forward-predicting transport and dispersion models can 
be interpreted as an expectation for the subsequent 
concentration field. In contrast, backwards-looking 
receptor models can be applied to identify the sources 
of measured pollutants. 

The approach presented here is to couple a forward 
dispersion model with a backward receptor model using 
a genetic algorithm (GA). Previous studies have 
approached this problem by using a genetic algorithm 
(GA) to optimize the calibration factor coupling the 
dispersion model with the receptor model. This current 
work takes a more comprehensive approach using real 
data, using the GA to determine not just the calibration 
factor (i.e. source strength) but also source timing and 
location. 

Works such as Holland (1975) and Goldberg (1989) 
first introduced the GA and its broad range of 
applications. Cartwright and Harris (1993) used genetic 
algorithms to calculate calibration factors in a simpler 
context, while Haupt (2005) demonstrated the 
effectiveness of this technique in a series of sensitivity 
studies. Haupt and Haupt (2004) discuss the many 
different types of GAs, of which the continuous 
parameter GA is most appropriate for tuning the 
calibration factors of a dispersion/receptor-coupled 
model. 

Haupt, Young, and Allen (2005 – hereafter referred 
to as HYA) provide a summary of the continuous 
parameter GA used in the current study. HYA validated 
the concept using the Gaussian plume dispersion 
equation with a chemical mass balance (CMB) receptor 
model, using synthetic receptor data produced by the 
Gaussian plume equation. The model has since been 
upgraded by replacing the Gaussian plume equation 
with the much more sophisticated SCIPUFF dispersion 
model (Sykes, et al. 1998; Allen, et al. 2005) as the 

coupled model’s forward component. The impact of 
upgrading in this way has been validated using synthetic 
data produced by SCIPUFF itself (Allen, et al. 2006). 
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The next step is to demonstrate the GA-coupled 
modeling approach in a real-data application. The goal 
is to use the model as a source characterization tool in 
the context of an operational dispersion model and with 
real data. Such a coupled model could be useful in 
source characterization for hazardous release events 
where both monitored pollutant and meteorological data 
are available.  

Real-data runs are conducted with the coupled 
model using neutrally buoyant tracer concentration data 
from the Dipole Pride 26 field experiments. These runs 
gauge the model’s ability to correctly characterize 
pollutant sources despite the stochastic scatter of 
realizations around the forecast ensemble mean. This 
work demonstrates the applicability of the coupled 
model concept and the ability of the genetic algorithm to 
diagnose calibration factors linking the dispersion model 
with the receptor data. 
  
2. MODEL METHODOLOGY 
 

The coupled model is inspired by the Chemical 
Mass Balance (CMB) model, which can be written as: 

mn n m=C S Ri                              (1) 
where C is the source concentration matrix, 
representing the expected contribution from each 
source n at the receptor for each observation period m, 
as computed by the dispersion model using assumed 
sources’ emission rates; R is the vector denoting the 
measured concentration of pollutant at the receptor with 
one row for each time period m; and S is a vector of the 
unknown calibration factors linking the two. The GA is 
used to compute the S vector that provides the best fit 
to the data (HYA). This matrix problem is often poorly 
conditioned, so simple inversion techniques are typically 
not able to solve the problem. Haupt (2005), however, 
has demonstrated the GA’s ability to find the solution. 

As the forward component of the coupled model, 
SCIPUFF computes the contributions from each source 
to fill the elements of matrix C in (1). SCIPUFF is an 
ensemble mean dispersion model designed to compute 
the time dependent field of expected concentrations 
resulting from one or more sources. The model solves 
the transport equations using a second-order closure 
scheme, and treats plumes as a collection of Gaussian 
puffs (Sykes, et al. 1986; Sykes and Gabruk, 1997). 
SCIPUFF can be used to predict expected 
concentrations of emitted gases, particulates, or 
hazardous releases. One specific application is as an 
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aid to health agencies in predicting dispersion of 
hazardous pollutants (Cox, et al. 1998). SCIPUFF is an 
appropriate choice for our coupled model because of its 
ability to compute expected concentrations over 
predefined time periods for any number of sources. 
Thus, its output can easily be integrated into (1). 

 
3. FIELD DATA TEST METHODOLOGY 
 

The model is applied to a real-data scenario to see 
how well it performs for individual realizations, in 
regards to the characterization of source location, 
emission time, and strength. The data set used here is 
from the Dipole Pride 26 (DP26) field experiments. 

 
Figure 1. Dipole Pride 26 test domain as 

represented in coupled model. N2, N3, S2, and S3 are 
the emission source locations. The thick black lines 
represent the approximate locations of the receptors (30 
along each line). The thin black lines represent terrain 
contours. Modeled after similar figures in Biltoft (1998) 
and Chang, et al (2003). 

 
The DP26 field experiments were carried out in 

November 1996 at the Nevada Test Site (Biltoft 1998). 
Instantaneous releases of sulfur hexafluoride (SF6) at 
locations surrounding the receptors were made during 
the experiments. There were 17 different field tests 
carried out during the DP26 experiments, although our 
study only used 14 of these tests, as three were 
discarded due to missing data. Figure 1 shows the test 
domain and orientation of sources and receptors. N2, 
N3, S2, and S3 are the source locations, and the thick 
black lines show the approximate receptor locations. 

Further details on these field experiments can be found 
in Biltoft (1998) and Watson, et al. (1998). 

Chang, et al. (2003) used the DP26 data to validate 
various dispersion models, including SCIPUFF. They 
found that about 50–60% of SCIPUFF-predicted 
concentrations came within a factor of 2 of the 
observations. Most large errors occurred when the 
modeled puff missed the receptors altogether due to 
errors in the interpolated wind field. Still, SCIPUFF 
performed as well as any of the other dispersion models 
validated by Chang, et al (2003). 

As part of the GA-coupled model, we are also using 
SCIPUFF to model the DP26 experiments. Therefore, 
we should expect the same discrepancies between 
expected concentrations and monitored values as found 
by Chang, et al (2003). Errors in results obtained by the 
coupled model can perhaps be attributed to these 
discrepancies. These errors are due in part to the 
difference between stochastic realizations and 
ensemble mean predictions. Chang, et al. (2003) 
attributed the differences mainly to the wind field 
interpolated by SCIPUFF. The GA-coupled model is 
designed to help account for these issues by calibrating 
the dispersion model output to match the receptor data. 
Also, a future coupled model could tune the wind field to 
ensure that the modeled puff reaches the receptors. 

To use the DP26 data, certain adaptations are 
required within the coupled model. The main difference 
between this application and the validation with 
synthetic data in HYA and Allen, et al. (2006) is that 
data are now available from multiple receptors, as DP26 
includes data from 90 independent receptors during 
each field test. We should use as much data as possible 
to maximize accuracy; therefore the overall 
methodology must be changed (particularly, the cost 
function) in order to incorporate all of the available data. 
To do this, the C and R matrices in (1) were expanded 
in an extra dimension corresponding to the receptors. 
The generalized matrix equation is now: 

mnr n mr=C S Ri                           (2) 
where r indexes the receptors. As before, m indexes the 
observation periods, and n indexes the sources. 

The calibration vector S is not expanded in this 
extra dimension, since the goal of the GA is to find a 
single S providing the best fit across all receptors. If the 
model matches the data perfectly, a single S vector 
would provide an exact fit for all receptors. The basic 
cost function is the same as in HYA, but modified to 
sum over all receptors: 
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The denominator represents a normalization 
scheme elaborated on in Section 4.2. 

Several initial runs are made with the coupled 
model using the DP26 data. The goal of these runs is to 
characterize the emission locations and times (strength 

  



characterization is the focus of subsequent sections). 
These runs use the four emission locations (N2, N3, S2, 
S3) at two times each, for a total of eight sources. Since 
each field test emitted from only one or two sources, S 
should be equal to 1 at the emitting sources, and  0 for 
all non-emitters, if all else is perfect. In other words, it 
should detect which source was the actual emitter for 
each field test by comparing receptor data with 
SCIPUFF-predicted contributions from each potential 
source. S values are not restricted to only 0 or 1, but a 
continuous range, initially set at 0 to 5. 

In these initial runs, the correct source and time of 
emission were identified 64% of the time. In obtaining 
these results, two changes to the coupled model 
infrastructure were made to improve performance. One 
issue is that the model did not characterize sources as 
non-emitters whose potential plumes dispersed 
completely outside the receptor domain. To fix this 
issue, each column in the C matrix, representing the 
pollutant contribution of each source n, is summed 
across all time periods and receptors. These totals are 
normalized by the maximum contribution from any 
source n to produce a scale factor ranging from 0 to 1: 
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The scale factor is multiplied by a prespecified 
upper limit to give the maximum source strength allowed 
by the GA for each source. Sources that cannot emit 
into the domain result in scale factors of 0, forcing the 
GA to limit these sources’ Sn values to 0. This method 
does not assume any prior knowledge regarding which 
sources are potential emitters, but does provide 
objective estimates of each source’s potential 
contribution to the domain. 

The range of values allowed by the GA should be 
increased to counter the inclusion of the scale factor, 
which may act to narrow the range for potentially correct 
sources. The range should not be made too large, 
however, since the run-to-run variability in solutions is 
proportional to this range. This is elaborated on in 
Section 4.8. 

In addition to the scale factor implementation, the 
cost function was changed to de-emphasize pollutant 
magnitudes. Instead of squares of differences, the 
model uses the base-10 logarithm of the squares of 
differences: 
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causing the cost function value for a particular S vector 
to depend less on magnitudes and more on whether or 
not a source is emitting at all. With a logarithmic cost 
function, overestimations in expected concentration, as 
often found with this data set, do not so greatly impact 

the model’s performance. For example, if the receptor 
data value is 500, but the model’s predicted 
concentration is 5000, a logarithmic cost function 
identifies the value of 5000 as more optimal than a 
value of 0. This is desired because the main issue in 
source identification is not strictly the magnitude, but 
whether a particular source is emitting at all. 

 
4. PERFORMANCE OPTIMIZATION 
 

Now we seek to optimize the performance of the 
coupled model with the DP26 data set by performing 
various tests, each designed to determine the impact of 
tuning a particular parameter value. While the 
optimization is specific to DP26, many of the general 
results can be applied to the coupled model for other 
data sets. The goal is to use the results from the 
sensitivity studies to produce an automated process that 
best characterizes the location, time, and strength of the 
pollutant source(s). 

 
4.1  GA vs. Random search 
 

The first test determines if solving the matrix 
problem requires the GA at all, or if finding the solution 
by brute force is equally efficient. The GA’s performance 
is compared to the performance of a random search 
method, which produced random S values and 
evaluated them with the same cost function. 

Figure 2 shows the minimum cost for one of the 
DP26 tests, as found by the GA (dashed) and the 
random search (solid), taken as an average over 5 runs 
for 20,000 iterations. Clearly the random search took 
much longer to find a low cost function value. In fact, out 
to 20,000 iterations, the random search never caught up 
to the GA. This shows that a random search is 
inefficient, and that more sophisticated optimization 
methods such as a GA are required. HYA and Haupt 
(2005) tested other methods such as matrix inversion, 
but since the matrix problem is often poorly conditioned, 
these techniques did not perform well. 

 
Figure 2. Minimum cost function value as a function of 
iteration number for the GA (dashed) versus a random 
search method (solid), carried out to 20,000 iterations. 
 

  



 
4.2  Cost functions 
 

As mentioned earlier, the cost function was 
modified to consider logarithms of squared differences, 
resulting in enhanced performance. We now extend this 
study with four different cost functions. Each of the four 
cost functions is either logarithmic or non-logarithmic, 
and uses one of two normalization schemes. 

Normalization can occur before or after summing 
each receptor's contribution to the cost function. Thus 
far, the coupled model has weighted each receptor’s 
cost function value proportional to its residual, as in (5), 
by normalizing after summing the contributions from 
each receptor. Another option is to weight each receptor 
equally by normalizing the contributions from each 
receptor prior to the summation. In terms of (5), this 
means removing the summation operators from the 
numerator and denominator and placing a new 
summation operator in front of the entire ratio: 
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HYA showed that a square is the optimal power of 
difference to take in the cost function. Therefore, all cost 
functions considered here involve some form of a 
squared difference. 

The coupled model is run with data from each 
DP26 field test for each cost function. Since the run-to-
run variability in solutions was quite small, long Monte 
Carlo simulations are not necessary. This also applies 
to the sensitivity studies that follow. 

Success scores are given based on the ability of 
the GA to correctly characterize the source. For each 
field test, scores from 1 (worst) to 4 (best) are awarded 
based on the GA’s performance, with separate scores 
given for location, emission time, and strength 
characterization. These success scores are then added 
up across all field tests to produce a total success score 
for location, time, and strength characterization, as well 
as overall performance (the sum of those three). The 
higher the success score, the better the relative 
performance. 

Table 1 shows the success scores for each cost 
function. While the choice of cost function did not affect 
the ability of the GA to identify the correct release time, 
the logarithmic, post-normalization cost function (5) 
used up to this point scored highest in identifying the 
release location. Using this cost function adds 25% to 
the runtime when compared to a non-logarithmic cost 
function, but the improved performance in correct 
source identification is worth the extra computational 
cost, as the logarithmic cost function correctly identified 
3 more sources than did the non-logarithmic cost 
function. 

 
 
 

Cost 
function 

Source
ID

Time 
ID 

Strength Total

Log, post-
norm 

29 34 29 92

Log, pre-
norm 

27 34 26.5 87.5

No log, 
post-
norm 

24 33 25.5 82.5

No log, 
pre-norm 

15 33 18.5 66.5

Table 1. Success scores given to four cost functions in 
identifying the correct emission source, time, and 
strength, and the sum of those three, across the 14 
Dipole Pride 26 field tests. A higher score indicates 
more success. The cost functions include either a 
logarithmic squared difference or just a squared 
difference, and either of two normalization schemes. 

 
Figure 3. Contour plot of average number of cost 
function calls versus mutation rate and population size 
for the coupled model. Darker contours correspond to 
fewer cost function calls. The number of cost function 
calls has been normalized by the natural log for viewing 
purposes. 
 
4.3  Population sizes and mutation rates 
 

Haupt (2005) performed a sensitivity study on GA 
population sizes and mutation rates using synthetic data 
and found that two combinations of sizes and rates were 
optimal: high population sizes coupled with low mutation 
rates, and low population sizes coupled with high 
mutation rates. A similar sensitivity study is made using 
the DP26 data set using 5 of the 14 field tests. The goal 
is to find an optimal combination of population size and 
mutation rate in terms of a minimum number of cost 
function evaluations, and therefore minimum computing 
time. 

Figure 3 shows the number of cost function calls for 
80 combinations of population sizes and mutation rates, 
averaged across 5 runs for each field test. The optimal 
mutation rate was 0.15, and the optimal population size 
was in the range of 4 to 12. Previous DP26 runs used 
0.20 and 8, respectively, so we were not far off the 
optimal case already. The values used do not affect the 

  



ability of the GA to find the optimal solution, only the 
number of iterations needed to obtain it; therefore there 
is no need to re-run previous tests with the optimal 
mutation rate. 

 
4.4  Output intervals 
 

The DP26 data set provides receptor data every 15 
minutes. SCIPUFF can also output values every 15 
minutes; however, unlike the SCIPUFF output, the 
DP26 receptor data are not instantaneous 
concentrations every 15 minutes, but rather time 
averages over 15-minute periods. Shortening the output 
interval in SCIPUFF may improve the GA's performance 
by producing a better match to the 15-minute averages. 

Four output intervals are tested: 15, 5, 3, and 1.5 
minutes. Expected concentrations produced by 
SCIPUFF are averaged into 15-minute time periods for 
inclusion into (2). 

Table 2 shows the success scores for this test. 
Source identification skill is not affected by the output 
interval, but the 5-minute interval resulted in the best 
performance for time and strength identification. It is 
surprising that smaller output intervals did not yield 
better performance, as shortening the output interval 
beyond 5 minutes did not appreciably improve accuracy. 

 
Timestep 
(minutes) 

Source 
ID 

Time 
ID 

Strength Total 

15 21 18 12.5 51.5 
5 23 21.5 12.5 57 
3 22 25.5 18.5 66 

1.5 23 23.5 12.5 59 
Table 2. Scores given to four timesteps in identifying the 
correct emission source, time, and strength, and the 
sum of those three, across 7 of the 14 Dipole Pride 26 
field tests. A higher score indicates more success. 
Receptor data is given every 15 minutes, so smaller 
timesteps averaged several expected concentrations 
within each larger 15-minute timestep. 

 
4.5  Receptor sets 
 

The DP26 data set includes data for 90 different 
receptors. Thus far the model has used all 90 at the 
expense of computing time. The cost function 
evaluations take less time when only using one 
receptor, decreasing computing time by a factor of 14. 
Because of this large discrepancy, it is useful to 
investigate whether or not using a subset of the 
receptors results in similar (or even better) performance. 

Six different receptor subsets are tested: all 90, the 
200 line (see Figure 1), the middle receptor (referred to 
as #215), the highest-magnitude receptor (in terms of 
measured concentration), the highest-magnitude 
receptor on the 200 line (Figure 1), and the highest-
magnitude range of 5 adjacent receptors. The latter 
three are unique for each field test and were determined 
by objectively analyzing the data. 

Table 3 shows the success scores. The best source 
and time identifications are found when including all 90 
receptors. However, the field-test-specific highest-

magnitude receptor sets result in the best strength 
identification. A possible reason is that many receptors 
recorded concentrations near 0 for the majority of 
sampling periods during the field experiments, and 
including these receptors in the analysis lowers the GA-
calculated strength. 

While using a subset of the receptors within the 
centerline of the plume gives a more exact strength 
characterization, it is not always best for source 
identification. The modeled plume may be slightly off-
center of the actual, and thus outside this subset of 
receptors. Subsequent analyses use all 90 receptors in 
order to optimize source and time identification. 

 
Receptor 

set 
Source 

ID 
Time 

ID 
Strength Total 

All 90 44 57 18.5 119.5 
200 line 41 56 22.5 119.5 

#215 29 48 19 96 
Highest 

single 
42 49 29 120 

Highest 
in 200 

line 

31 50 25 106 

Highest 
range of 

5 

44 51 28.5 123.5 

Table 3. Scores given to six receptor sets in identifying 
the correct emission source, time, and strength, and the 
sum of those three columns, across the 14 Dipole Pride 
26 field tests. A higher score indicates more success. 
The receptor sets include “All 90” (all receptors 
included), “200 line” (Figure 3), “#215” (the middle 
receptor in the 200 line), “Highest single” (highest-
magnitude receptor with respect to its values), “Highest 
in 200 line” (same as highest single, but restricted to the 
200 row in Figure 3), and “Highest range of 5” (highest-
magnitude range of 5 adjacent receptors’ values). 

 
4.6  Specific source and time characterization 
 

So far, the coupled model’s source array has only 
included sources N2, N3, S2, and S3 (Figure 1) at two 
times each within each field experiment. We now use a 
source array that does not assume a particular release 
location or time by using a grid of locations and multiple 
times. This study is split into three parts. 

The first part uses a .06°-by-.06° grid of points with 
.02° resolution as the source array. The grid is located 
on the side of the domain where the release was known 
to originate. Each source specifies the previously known 
correct release time, so that the coupled model is only 
characterizing the location within the grid. Since there 
are 16 sources and 14 sampling periods, this appears to 
violate the requirement of the matrix problem that the 
number of sources be less than the number of sampling 
periods; however, if all 90 receptors are used, there are 
effectively 14× 90 sampling periods. The coupled model 
was able to pinpoint the correct emission grid location 
for 6 of 14 field tests, while an additional 3 field tests 
came within one grid point. 

  



The second part of the study considers 16 different 
emission times separated by 10 minutes each. This 
portion of the study only characterizes the release time, 
as each source specifies the previously known correct 
location. The release time was pinpointed exactly for 9 
of 19 emissions made in the 14 field tests, while for 14 
of 19 emissions, the GA-produced time was within 30 
minutes of the actual. Some of the field tests had major 
issues related to missing or faulty data (both receptor 
and surface meteorological data); model runs invoking 
these field tests have performed poorly in every study 
thus far, but are still included in the overall analysis. 

The first two parts of this study each use some 
previously known information, either the location or the 
time of emission. The final portion of the study did not 
assume either, but attempted to pinpoint the location 
and time concurrently, using four locations on the 
corners of a .04°-by-.04° grid, and four emission times 
separated by 40 minutes each. 

The coupled model was, however, unable to 
diagnose upwind location and release time 
simultaneously. Figure 4 provides an illustration, with a 
receptor X and two sources A and B each upwind of the 
receptor. Suppose source A emits at time 0, and source 
B emits at time 3. Since both puffs would reach the 
receptor X at time 6, the coupled model would be 
unable to apportion the correct amount of pollutant to 
each source because the puffs have merged. Source A 
may be the correct emitter in this theoretical example, 
but since the matrix problem is rank deficient, the GA is 
likely to attribute some random combination of pollutant 
to both A and B. 

 
Figure 4. Demonstration of the coupled model’s difficulty 
in diagnosing upwind location and release time 
simultaneously. If source A emits a puff at time 0 and 
source B emits at time 3, each puff reaches receptor X 
at time 6, and the coupled model would be unable to 
properly attribute the correct amount of pollutant to each 
source. 

Using multiple receptors in the crosswind direction 
does not solve this problem because there is little (if 
any) separation between each source’s puff. Thus, other 
receptors off the centerline in Figure 4 have the same 
problem as those along the centerline. Even though the 
puffs from sources A and B are of different sizes, the 
model still transports some of each source’s puff to off-
center receptors, and the same problem exists. The 
model performs better if only a single row of potential 
sources inside the correct range is included in the 
candidate source array. Such a source array provides 
the basis for the first stage of the multi-stage process 
described in Section 5. 

 
4.7  Source strength characterization 
 

In an effort to improve source strength 
characterization, the next set of coupled model runs 
takes the locations and release times found above as 
given and reruns the coupled model to tune only the 
source strength. The best-fit source locations and times 
were used instead of the actual documented emissions 
in order to minimize the impact of SCIPUFF’s dispersion 
and transport errors on the source strength analysis. 
The coupled model has thus far underestimated the 
strengths when incorporating all 90 receptors, but 
performance should improve when the coupled model is 
forced to attribute all of the pollution to only one or two 
sources. Different receptor sets are re-tested to see if 
these results agree with the analysis in Section 4.5. 

Unlike the case for a larger source array, using all 
90 receptors with just the correct sources produces a 
better strength characterization than the other receptor 
sets tested (highest single receptor, and highest 
adjacent range of 5). In cases where SCIPUFF’s 
centerline does not match the data, SCIPUFF’s 
predicted concentrations within smaller receptor sets 
(which are within the actual puff, not the modeled puff) 
are low and the GA compensates by greatly over-
approximating the source strength. This does not 
happen in larger receptor sets because all receptors are 
included in the analysis, including those the modeled 
puff passes through. Therefore, receptors that the 
modeled puff envelops, but not the actual puff, act to 
decrease the strength characterization to a more 
realistic value. 

Using all receptors, source strengths came within 
an order of magnitude of the actual strength reported by 
Biltoft (1998) for only 9 of 19 emission scenarios. While 
performing well in regards to location and emission time, 
the coupled model’s strength specification has thus far 
not been as precise. 

 
4.8  Other analyses 
 

Other sensitivity studies are performed, either 
involving new model runs or additional analysis of 
previous studies. One such study determines the effect 
of upper-air data and inclusion of additional wind profiles 
on coupled model performance. It is found that changes 
in upper-air data have little effect on the source strength 
characterizations, and no effect on locations or times. 

  



Thus, errors in source characterizations cannot be 
blamed on insufficient upper-air data, as perturbations in 
the upper-air data or additions of new data were found 
to have little to no impact on the solutions. This 
suggests that the plume centerline errors are the result 
of flows not resolved by the DP26 observations. 

Another study analyzes the coupled model’s 
performance for the seven field tests with multiple 
emissions. For these field tests, the coupled model is 
able to characterize both releases correctly only 42% of 
the time (3 out of 7). Additional analysis is done for the 
other seven field tests which have only one emission, 
for which the coupled model produces a high-
confidence single-emission solution (i.e. the solution did 
not indicate there were multiple emissions) for 5 of 7 
field tests. Because of the issue discussed earlier 
regarding the possibility of puffs within a multiple-
release field test missing the receptor domain, it is not 
surprising that less than half of the two-emission tests 
result in a correct characterization of each. 

As mentioned earlier, the run-to-run variability in 
solutions is proportional to the range of values allowed 
by the GA. This range corresponds to the possible 
source strengths. To obtain the most precision, this 
range should be minimized while still encompassing all 
possible strengths. However, the range must be 
increased beyond the presupposed range of possible 
strengths because the scale factor (4) effectively shrinks 
this range. A study is performed to determine how much 
this range must be expanded to compensate for the 
scale factor. 

Some correct sources are found to have scale 
factors as low as 0.1. Thus, to ensure that the range of 
actual strengths is realized, the maximum allowable 
source strength must be an order of magnitude larger 
than the presupposed maximum possible strength. 
Increasing the range beyond one order of magnitude 
adds to the run-to-run variability in solutions while not 
including any additional solutions. 

 
5. MULTI-STAGE PROCESS 
 

Because different candidate source arrays work 
better for characterizing source location, time, or 
strength, a combination of methods offers possible 
improvement in at least some of the characterizations. 
The goal is to combine the best features of the runs 
described above to produce a multi-stage process 
involving multiple model runs to progressively determine 
the correct source, time, and strength characterization. 
This multi-stage process goes as follows: 

The first stage starts with a coarse grid designed to 
yield an initial estimate of how many different emission 
sources are present, and when they emitted. We start 
with 32 sources – 8 locations at 4 times. The locations 
are shown in Figure 5. The coupled model calculates 
how much pollutant should be attributed to each of the 
four times, and if it is an appreciable amount (within 1/3 
of the maximum, since 1/3 was found to be a good 
benchmark in previous analyses), the time is included in 
the next stage. This stage allows for a maximum of four 
emissions (one at each of the four times). 

 
Figure 5. Source configuration for the coupled model 
consisting of both location and time uncertainty. The 
filled-in triangles represent the locations tested by this 
setup, and the hollow triangles represent the actual 
emission locations. Each source location was included 
in the source array for each of four release times 
separated by 40 minutes. 
 

The second stage performs a separate coupled 
model run for each time output from the first iteration. 
The goal is to find each time period’s most probable 
location using a .06°-by-.06° grid with .02° resolution (as 
done before). The location returning the maximum S 
value at each time is then carried to the next stage. 

The third stage runs the coupled model once with 
the locations found in the second stage in the source 
array, using release times separated by 10 minutes to 
refine the release time characterization. The goal is to 
pinpoint the most probable time for each release by 
comparing the S values. 

The final stage performs one more model run with 
the location/time combinations found in the third stage 
to specify the source strength. After the GA determines 
the best-fit S vector, we filter out any source whose 
strength was found to be less than 1/3 of the maximum 
for any source. If any sources are eliminated, this step is 
repeated without those sources. The final result is a list 
of emission locations, times, and strengths. 

This four-stage process was run once on each of 
the 14 field tests to mimic a real-world attempt to 

  



characterize the locations, times, strengths, and number 
of emissions. Source characterization for one of the field 
tests was perfect in finding the correct location, time, 
and number of emissions, while the strength 
characterization for this field test was a factor of 2 too 
low. Locations determined for other field tests were 
typically close, while the release times were generally 
within 40 minutes of the actual. While the majority of 
strength characterizations were still underestimated, 
they were closer than in previous studies. Since the final 
stage only considers the “best fit” sources found by the 
previous stages, these “best fit” sources resulted in 
higher strength specifications. 

The model determined the correct number of 
sources in 6 of 14 field tests, while overestimating the 
number of sources on 5 of the other 8 field tests. The 
remaining three field tests each involved receptor data 
where one puff likely missed the receptor domain, and 
thus resulted in underestimations of the number of 
sources. 

To improve the performance of the multi-stage 
process, the factor of 1/3 used to filter out non-emitting 
sources could be optimized further; however, the 
specific value is subjective and may not directly apply to 
other data sets. We considered whether the last stage 
might benefit from removing the logarithm from the cost 
function (5), but found that this change did not improve 
strength characterization. 

This process could surely be fine-tuned, but as 
used here shows the real-world applicability of this 
coupled model towards source characterization. The 
process can be applied to other data sets, although 
specifics such as the 1/3 filtering threshold would need 
to be re-optimized and likely changed. When the 
coupled model is applied to other data sets, it is 
expected that prior information regarding some aspects 
of the sources would improve the ability of the coupled 
model to characterize their remaining aspects. 
Examples of useful prior information include a range of 
possible sources, times, and strengths, as used in this 
study. It is not currently known exactly how much 
uncertainty the coupled model can cope with in 
determining the correct source characterization. The 
results from Allen, et al. (2006) and HYA, however, 
suggest that if noise is on the same order of magnitude 
as the signal, correct characterization is still possible. 

 
6. CONCLUSIONS AND RECOMMENDATIONS 
 

Validation of the GA-coupled model using data from 
the Dipole Pride 26 field experiments demonstrates the 
model’s potential applications. The coupled model 
performs well in identifying the correct emission 
locations and times, to as good a degree of accuracy as 
can be expected given the disparity between the 
ensemble nature of the dispersion model and real data 
resulting from a single realization of turbulent flows. The 
model struggles somewhat when working with multiple-
emission field tests, as one emission may have missed 
the domain and therefore not been detected by the 
receptors. This also complicates the coupled model’s 
strength characterization. 

Multiple GA runs can be used with different 
candidate source arrays to produce the best 
location/time/strength characterization. The multi-stage 
process described in Section 5 can in theory be tuned to 
apply to other data sets. The specifics of the multi-stage 
process are project-dependent, but the multi-stage 
process as a whole should apply to any data set or 
situation. If general information regarding the nature of 
the sources is known (e.g. an idea of when, where, how 
many, and how much), the coupled model is more 
robust in finding a solution. This is partly because the 
coupled model cannot properly differentiate between 
some groups of parameters, such as upwind range to 
the source and time since release. 

The coupled model can be applied as a tool for 
identifying approximate source locations and times in 
real-world scenarios. Given a set of receptor data, one 
could apply the coupled model in identifying the possible 
emission source(s). For the Dipole Pride 26 data set, 
the coupled model was able to pinpoint the source and 
time of emission to a good approximation for a majority 
of the field tests, despite the discrepancies between the 
data and SCIPUFF-predicted output as discussed by 
Chang, et al (2003). Thus, one can expect similar 
success with other data sets. 

One advantage of the Dipole Pride data set is the 
availability of meteorological surface data every 15 
minutes at several points within the domain. Surface 
data of this resolution in time and space is seldom 
available in other applications. A lack of sufficient 
meteorological data is likely to hinder the coupled 
model’s performance in source characterization. It is 
recommended that the coupled model be used to help 
locate the emission source(s), given sufficient 
meteorological data and at least a rough initial estimate 
of the location and time of emission. Work with the 
coupled model is ongoing, including plans to use 
receptor data generated by more complex fluid 
dynamics models that are more compatible with 
SCIPUFF’s ensemble-mean predictions, and to use the 
GA approach to find errors in meteorological data. 
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