
J2.4                   METEOROLOGICAL UNCERTAINTY EFFECTS IN  
ATMOSPHERIC TRANSPORT AND DISPERSION MODELING: 

A DEMONSTRATION 
 

L. Joel Peltier*, Sue Ellen Haupt, John C. Wyngaard 
David Stauffer, Aijun Deng, Francis Kredensor 

 
The Pennsylvania State University, State College, PA 

 
 
 
1. INTRODUCTION 
 
The atmospheric dispersion of a contaminant 
is a complicated physical process involving a 
three-dimensional, turbulent wind field with a 
very wide range of spatial scales. This wind 
field is affected by the physical features and 
the energy balance of the underlying surface, 
and by the large-scale atmospheric conditions. 
The instantaneous, local state of this turbulent 
wind field is chaotic and cannot be predicted 
with certainty (Wyngaard 1992, Wyngaard and 
Peltier 1996).  But the atmospheric dispersion 
of contaminants by the wind field is an 
important contemporary problem that must be 
addressed. Examples include emission 
plumes from industrial complexes, smoke 
stacks, and traffic sources; chemical plumes 
from accidental releases; and chemical, 
biological, nuclear, or radiological clouds from 
deliberate releases (National Research 
Council 2003). 
  
Some atmospheric transport and dispersion 
models couple a representation of the 
contaminant source with an estimate of the 
expected (i.e., ensemble-mean) wind field to 
predict the expected contaminant trajectory 
and strength and an estimate of the expected 
hazard area. These statistical  predictions 
have uncertainty bounds which  are seldom 
quantitatively known.  
  
The average dispersion caused by turbulence 
that differs from realization to realization within 
an ensemble could be called “virtual 
dispersion,” to use G. I. Taylor’s term, in that it  
 
_____________________________________ 
Corresponding author address:  L. Joel Peltier, 
Applied Research Laboratory, P.O. Box 30, 
Pennsylvania State University, State College, 
PA  16804; e-mail: peltierlj@psu.edu   
 

exists only as an average over many 
realizations.  To illustrate, imagine a 
nondeformable, nondiffusive puff of effluent (a 
neutrally buoyant balloon, for example) 
released into a turbulent flow. Within each 
realization this balloon follows a different 
turbulent trajectory in response to the local 
wind field. Averaging over a large ensemble of 
realizations yields a mean concentration field 
that in its broad, diffuse nature and much-
lower concentrations clearly displays this 
virtual dispersion.  
  
Wind fields can be diagnosed from a variety of 
sources and their fidelity can range widely. 
Those derived from observations have highest 
fidelity nearest the observation stations and 
measurement times and increasing 
uncertainty as the spatial and temporal 
separations increase. The uncertainty 
depends on the quality of the interpolation 
between stations. Wind-field models coupled 
with observations can minimize the 
interpolation error in space and time. 
Diagnostic models enforce realizability 
constraints on the interpolated wind fields to 
improve their fidelity. The prognostic models 
used in numerical weather prediction (NWP) 
produce wind fields that are consistent with 
the modeled governing equations, the 
imposed boundary conditions and forcings, 
and the observational data assimilated into the 
model system.  
  
Data assimilation is a critical step toward 
minimizing wind-field uncertainty. The space 
comprising all possible wind fields consistent 
with the governing equations and with the 
initial and boundary conditions is large.  Data 
assimilation shrinks this space by excluding 
those members not consistent with available 
measurement data. The set-average wind field 
shares the similarities of the surviving 
members. For historical reconstructions, data-



assimilated wind fields can be true to the 
coherent scales of the actual wind field 
realization.  As time and distance from the 
point of data insertion increases the predicted 
wind field departs from the actual field and 
uncertainty increases. The decorrelation time 
relates to the lifetime of coherent structures in 
the flow field. Thus wind-field estimates for 
“nowcasts,” 0 to 6 hours into the future, also 
may be reasonably good, especially when 
data assimilation is used during a pre-forecast 
period to improve model spinup (Leidner, et al. 
2001, Otte, et al. 2001). With no data available 
for assimilation, wind estimates for forecasts 
24 or more hours into the future revert to the 
ensemble of all consistent wind-field 
members.  
  
The wind field introduces two scale-based 
types of uncertainty into a dispersion 
prediction.  One is the uncertainty in the wind 
field used to transport the contaminant. We 
call this “outer variability”. The second is the 
unresolved turbulence within this transporting 
wind field (“inner variability”).   Although some 
models such as SCIPUFF (Second order 
Closure Integrated Puff model) (Sykes, et al. 
1984, Sykes 2004) include a parameterization 
of the inner variability in terms of large-scale 
variability (LSV) parameters, they do not 
specifically include the outer variability. We 
propose approaches to parameterizing this 
outer variability that are based on ensembles 
of meteorological forecasts.  The concept is 
that the uncertainty in the transporting wind 
field can be diagnosed from an ensemble of 
wind-field predictions, allowing one to compute 
uncertainty fields from the ensemble and 
extract uncertainty parameterization 
information from them.  
  
This paper is organized as follows. First we 
consider data-assimilated model output in the 
context of ensemble-averaging concepts. We 
then derive a dynamical equation for the 
evolution of the outer variability velocity scale 
and propose a model equation for its spatial 
scale.  This provides an uncertainty 
representation that can be used in 
atmospheric dispersion models.  
 
 
 
 
  

2. ASSESSING WIND-FIELD 
UNCERTAINTY 

  
Because turbulent flows have what is called 
``sensitive dependence on initial conditions,” 
their evolving details in a particular realization 
cannot be predicted with certainty (Lorenz 
1963).  Experience shows, however, that in 
sufficiently well understood flows the flow 
statistics can often be predicted reasonably 
well.  Thus dispersion models are designed to 
predict ensemble average dispersion statistics 
(National Research Council 2003). 
  
Fig. 1 illustrates these points by depicting the 
differences between the instantaneous 
structure in a realization of a turbulent flow 
(panel a) and the ensemble-mean flow (panel 
b), using a dispersing plume for flow 
visualization. Panel a is a snapshot in time; a 
snapshot taken a short time later would be 
shifted downstream but otherwise be similar 
because the large-scale structure changes 
slowly. A snapshot taken much later would be 
very different. The snapshot is one member of 
the ensemble of possible realizations for the 
concentration field, each denoted by 

( , ; )c x t nG� , where n is realization number, xG  is 
spatial position, and t  is time. Common 
characteristics of each member of the 
ensemble are highly concentrated effluent 
regions separated from “clear” surrounding 
fluid, and spatial variability that increases with 
distance from the source. Were one to stand 
in a plume’s path, one would experience 
moments of very high exposure separated by 
times of minimal exposure.  
  
The ensemble-mean flow, Fig. 1b, is the 
average over all realizations. Its concentration 
field ( , )C x tG , is  
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and differs significantly from the concentration 
fields of the individual members. The local 
pockets of high concentration and downstream 
variability disappear in the averaging; the 
mean plume is symmetric about the centerline 
and has uniformly decreasing concentration 
with increasing downstream distance.  The 
mean field is stationary; it has no large-scale 
intermittency.  



  
The statistics of the fluctuating field, 

( , ; ) ( , ; ) ( , )c x t n c x t n C x t= −
G G G� , provide 

measures of the  concentration variability. The 
concentration variance is a commonly used 
metric:  
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The greater the variability between the 
ensemble members, the greater the variance.  
  
Models can be developed and calibrated to 
predict the statistics of the ensemble-mean 
plume, but that plume will not be observed in 
any realization: it is a “virtual plume.”  If, 
however, in a dispersion problem the 
ensemble-mean outcome is acceptable, the 
ensemble-mean wind field is appropriately 
used to drive the model. Dispersion problems 
involving long-duration releases, which are 
often called chronic problems, are an 
example. Short-duration releases, called acute 
or episodic problems, are sensitive to details 
of the transporting wind field, and ideally the 
transporting wind field would be the one 
experienced during the event.  In practice it 
should be our best estimate of that field. 
  
Figure 1c represents a transporting wind field 
appropriate for modeling the acute release in 
Fig. 1a. The red circles in the figure represent 
measurement stations that give some 
knowledge of the wind field during the release. 
Data-assimilated NWP predictions for this 
flow, using observations from these stations 
as input, isolate a subspace of the wind field 
ensemble that comprises those realizations 
that are consistent with the data. Because 
observation stations are sparse, and initial and 
boundary conditions are not known exactly, 
and the physical models underlying the NWP 
system are approximate, data-assimilated 
NWP will not uniquely identify the member in 
Fig. 1a as the transporting wind field. Instead, 
it will identify a number of members that have 
common large-scale features but differ in 
detail. Denoting the conditionally sampled 
subspace by ( , ; )c x t ηG� , where η  is the 
subspace member number, the conditionally 
averaged plume concentration is  
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( , )C x tG�  will correlate well with the actual 
plume in Fig. 1a because they will have 
common features. ( , )C x tG�  will exhibit large-
scale variability, but its small-scale structure 
will be more diffused and the boundary 
between the plume and the surrounding fluid 
will be less sharp.  
  
Even though the structure of the conditionally 
averaged plume is similar to the structure of a 
realization, as a statistical construct the 
conditionally averaged plume cannot be 
realized, although its differences from a 
realizable plume are much less distinct. The 
inter-member variability of subspace 

( , ; )c x t ηG�  is a measure of prediction 
uncertainty.  It can be much less than the full 
ensemble variability, depending on the NWP 
skill, and will asymptote (in time) to the full 
ensemble variability for forecasts as time from 
the last available data-assimilation instant 
increases. 
  
Although the discussion above focuses on the 
concentration field as an example, our 
statements apply equally well to the velocity 
field and to other transported quantities. The 
primary points are 1) wind-field ensembles 
provide one route for assessing the effects of 
wind-field uncertainty on dispersion, 2) 
representations of the mean wind field may be 
adequate for modeling chronic releases but 
not for modeling acute releases, and 3) 
dispersion-model uncertainty can be mitigated 
by numerical weather prediction skill.   
 
 
3. LARGE-SCALE UNCERTAINTY 
MODELING 
  
Large-scale uncertainty effects on dispersion 
are generally not predicted by contemporary 
dispersion models. A traditional approach is to 
use one representation of the transporting 
wind field coupled with one representation of 
the source to make one prediction of the 
dispersion event. Depending on the 
sophistication of the dispersion model, some 
effects of unresolved motions may be 
represented. To our knowledge, however, no 



dispersion model accounts for the effects of 
variability of the wind-field ensemble.  Most 
uncertainty analyses are more in the context 
of sensitivity to input parameters (Rao 2005; 
Hanna, et al. 1998; Lewellen and Sykes 
1989).  
  
Figure 2 presents a research plan for 
accounting for large-scale uncertainty in 
dispersion models. The desired capability is to 
use one wind field to make one dispersion 
prediction and have large-scale uncertainty 
effects included through parameterizations. 
This approach retains quick turn-around for 
rapid response, while giving better estimates 
of true hazards. Without appropriate 
parameterizations, the effects of large-scale 
uncertainty can be assessed by creating a 
large-scale wind-field ensemble (a process 
already used in operational NWP), running 
dispersion predictions for each ensemble 
member, then ensemble-averaging the 
dispersion results. This process is 
computationally intensive, requiring multiple 
wind-field representations and multiple 
dispersion runs, so is not an attractive 
operational alternative. An intermediate 
approach is to create the large scale wind-field 
ensemble, preprocess the ensemble to extract 
a representative wind field and parameterized 
uncertainty scales, and then perform one 
dispersion prediction using the representative 
wind field and the uncertainty parameters. 
Because the preprocessing can be completed 
offline and the uncertainty data stored along 
with the representative wind field, the latter 
approach can be made operationally feasible. 
This intermediate capability is the focus of our 
work. 
  
The inherent unpredictability of atmospheric 
flows means that any one representative wind 
field will have an associated uncertainty. In 
Fig. 3 (upper panel) we present dispersion 
results for three members of a wind field with 
as large as 90° wind-direction uncertainty 
between them.  The individual plumes share 
common widths and concentration 
distributions but differ in their orientations. A 
representative wind direction could be the 
average, 45°, and the uncertainty scales 
would relate to the differences in the plume 
trajectories. The single dispersion prediction 
using the representative wind direction 
coupled with the uncertainty scales is 
presented in Fig. 3 (lower panel). The hazard 

area of the predicted plume is now much 
larger, enveloping the region affected by the 
wind-direction uncertainty.  
  
We have suggested that large scale-
uncertainty can be assessed using model 
nsemble data and have proposed that 
uncertainty parameters be extracted to 
represent the effects of large-scale uncertainty 
in dispersion. Using ensembles is emerging as 
a new direction in dispersion modeling 
(Warner, et al. 2002; Galmarini, et al. 
2004a,b). The following sections demonstrate 
this approach, using a contemporary NWP 
ensemble as a starting point. 
 
 
3.1  Short-Range-Ensemble Forecast 
(SREF) Data 
  
Our case study is based on a short-range-
ensemble forecast for the United States 
supplied by the National Center for 
Environmental Prediction (NCEP) (McQueen, 
et al. 2005.) The SREF results are from 15 
model runs initialized two times per day for 48-
hour forecasts.  Forecasts begun at 1200Z 
September 21 are chosen as a representative 
mid-latitude case due to fronts over the 
eastern United States.   
  
Visualizations of the wind field vectors at the 
850mb surface and surface temperature 
contours are presented in Fig. 4 for the 15 
SREF members. A visual scan shows strong 
similarities among the members (as desired 
because each is a ``best prediction” of the 
expected weather). Differences exist as well; 
they relate to the effects of model error, initial 
and boundary condition sensitivity, and 
solution drift due to nonlinearities in the 
governing equations.  
  
The variability within the ensemble is directly 
related to the large-scale uncertainty.  Defining 
the member velocity, n

iU , and the mean 

velocity, iU , where   
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 a deviation velocity, n n

i i iU U Uδ = − , can be 
defined that is nonzero only when variability in 



the ensemble exists.  Scalar measures of  the 
uncertainty are the deviation energy,  
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and the corresponding characteristic velocity, 

Lq kδ= . The subscript “L” is used to 
denote “large-scale variability.” 
  
The mean velocity vectors and mean surface 
temperatures from the SREF ensemble are 
presented in the left panel of Fig. 5. The 
characteristic velocity Lq  is presented on the 
right. One sees that the prediction uncertainty, 

Lq , is large in the northeast and southwest 
quadrants of the plot. A comparison with the 
surface temperature field suggests that the 
regions of high uncertainty are associated with 
frontal systems, as one might expect. 
  
Although Lq  provides quantitative information 
on large-scale uncertainty, it provides no 
information about its effects on the expected 
hazard area. For this purpose a second 
modeling parameter, an uncertainty length 
scale LΛ , is useful. We will show that our 
parameterization of large-scale uncertainty in 
terms of characteristic velocity and length 
scales, Lq and LΛ , is equivalent to stating 
that the effects of large-scale uncertainty on 
dispersion is diffusive with a characteristic 
diffusivity given by L L Lqν Λ∼ . 
 
3.2  A Model for LΛ  
  
The member velocity fields in the SREF 
ensemble each satisfy the momentum 
equation 
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Here iβ  represents buoyancy and Coriolis 

forces, nP  is pressure, and n
ijτ  is a stress 

tensor that represents the effects of 
unresolved motions; it is modeled in the NWP 
code.  Averaging (1) over the SREF ensemble 

(15 runs) yields the mean-velocity transport 
equation 
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Here P is averaged pressure, iB  is averaged 

buoyancy and Coriolis forces, and n n
i jU Uδ δ∂  

is the kinematic “deviation-field stress” caused 
by the velocity-deviation fields. We can 
diagnose this term from the SREF ensemble 
data. We can also model its diffusive effects, 
thus providing a means to diagnose the model 
parameters from the SREF data.  We work 
with the deviation energy kδ  because it is a 
scalar that yields the model velocity scale.  
  
By subtracting (7) from (6) we form the 
transport equation for the deviation velocity in 
the n-th member of the SREF ensemble: 
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By contracting (8) with n
iUδ , averaging over 

the SREF ensemble, and simplifying we can 
write 
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 is the strain-

rate tensor associated with the SREF 
ensemble.   



         
Equation (9), which is formally exact, governs 
the production, destruction, and transport of 
deviation energy. By interpreting this equation 
we can understand the nature of the variability 
in the SREF ensemble thus understand its 
uncertainty.  
       
The left side of (9) is the derivative following 
the mean (over the SREF ensemble) motion. It 
shows that data advecting through a region of 
high uncertainty will become less certain and 
will carry the increased uncertainty to other 
regions in the flow field. On the right side of (9) 
are sources of uncertainty.  Terms 1, 3, and 6 
are flux-divergence terms. They integrate to 
zero globally, so they can only mix. As 
contractions of a kinematic stress and a strain-
rate tensor, Terms 4  and 5 have the form of  
production or destruction terms. Term 2 
relates to production or destruction of 
uncertainty through buoyancy and Coriolis 
forces, but in principle the buoyancy effects 
can be negligible and one can show that the 
Coriolis effects vanish identically. It follows 
that terms 4 and 5 are the key ones in Eq. (9). 
Term 5 represents the production of 
uncertainty through the stress of the deviation 
motion acting on the mean strain rate. Also, 
the physical modeling for the SREF members 
is intended to be accurate, so even though 
inter-model variability exists, we believe that 
gradient production is the dominant source.   
       
Following the practice in turbulence modeling, 
we relate the deviatoric stress associated with 
the deviation motion to the mean strain rate 

ijS  through an effective diffusivity: 

2 2
3

D n n
ij i j ij L ijT U U k Sδ δ δ ν ≡ − = − 

 
.    (10) 

 
This modeling assumption leads to an 
expression for the uncertainty scale LΛ . 
Because the tensor relationship (10) does not 
yield a unique scalar value for Lν  (there are 6 
independent equations), we perform the 
additional step of contracting (10) with the 
deviatoric stress to yield a scalar expression 
that can give a unique value for Lν . The 
relevant steps are: 
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The right side of (12) can be computed from 
the SREF ensemble data yielding Lν . Given 

Lν , a characteristic diffusion length, LA , can 
be computed: 
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The uncertainty model scale LΛ  is 

proportional to LA : 
 
                     L L LcΛ = A .                           (14) 
 
The proportionality coefficient Lc  can be 
determined by comparisons to diffusion model 
ensembles. 
  
Figures 6 and 7 present contours of the large-
scale diffusivity, Lν , and large-scale mixing 

length, LA , respectively as diagnosed at the 
850mb level of the SREF data. We see that 
the uncertainty mixing length is on the order of 
100 km in the regions of high uncertainty. 
Similar results were obtained with an analysis 
at 1000mb. Because we expect the 
proportionality coefficient to be of order 1, the 
uncertainty model length scale is also 
expected to be on the order of 100 km.  
  
 
4.  SUMMARY AND DISCUSSION 
  
In this work we present the theoretical basis 
for using wind-field ensemble data to estimate 
wind-field uncertainty and present a method 
for deriving model parameters for uncertainty 
that can be used in dispersion modeling. The 
parameters are a characteristic length and 



velocity scale that are related to an effective 
diffusivity for large-scale uncertainty.  
  
The characteristic velocity scale is related to 
the deviation energy in the wind-field 
ensemble. By deriving a formally exact 
transport equation for this energy field, the 
source term for uncertainty is identified and 
used to construct a model for the 
characteristic uncertainty length scale. The 
SREF data  yield an estimate of this 
parameter on the order of 100 km. 
   
Our future work will consider ensembles of 
dispersion runs that can be used to tune the 
proportionality coefficient for our model 
uncertainty length scale. We intend to use our 
model in a dispersion code to demonstrate its 
effectiveness as a representation of large-
scale uncertainty in dispersion.  
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Figure 1:  Comparison of a) instantaneous, b) long-time average (a surrogate for ensemble-
mean) and c) data-assimilated representations of a dispersion plume. The red dots denote  
measurement stations. 

 



 
Figure 2: Accounting for large scale uncertainty in dispersion.  
 



 
 
Figure 3: Large-scale uncertainty effects on dispersion: synthetic data showing dispersion 
plumes for 3 ensemble members of a wind field with high wind-direction uncertainty (upper panel) 
and a corresponding prediction with a representative wind field and parameterized uncertainty 
scales (lower panel). 
 



 
 
Figure 4: Wind vectors and surface temperature contours for 15 members of the short-range-
ensemble forecast for the United States. 
 



 
 
Figure 5: Mean field and characteristic velocity (m/s) data computed from the 15 member 
SREF ensemble. 
 
 

 
Figure 6: Large-scale diffusivity, Lν , computed from the SREF data. 
 



 
Figure 7:  Large scale uncertainty mixing length, LA  (km). 
 


