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1. INTRODUCTION 
 
When a numerical atmospheric model is run 
over a city without a spatial resolution high 
enough to resolve every building, the problem of 
how to represent the impact of the buildings 
contained within a grid cell on the spatially 
averaged variables arises. This is the common 
case for mesoscale models, for example, that 
are often used to provide meteorological fields to 
air quality models. In recent years several 
parameterisations have been proposed to 
answer this problem (Brown and Williams, 1998, 
Martilli et al. 2002, Coceal and Belcher, 2004, 
etc.). Although such schemes show an 
improvement of the general behaviour of the 
flow at the mesoscale, their validation have been 
particularly difficult, because of the lack of 
spatially averaged variables. In fact, these are 
the proper fields that can be compared to the 
results of a mesoscale model. 
In this paper, we use results from a CFD 
numerical model run over an array of cubes and 
validated against wind tunnel data (see full 
details in the Santiago et al. paper presented in 
this session), to derive such spatial average 
values. The advantage of the CFD results, in 
fact, is that provides a very dense (in space) set 
of data, which makes meaningful to derive 
spatial average values (things that it is rarely 
possible from real scale measurements). 
 
2. AVERAGING TECHNIQUE 
 
For a flow with strong spatial inhomogeneities as 
the flow over an array of cubes, it is important to 
split between time and space averages. Using 
overbars to indicate time average and brackets 
to indicate space average, we have for a generic 
variable ψ  
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and for the (co-)variances 
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Here the first term on RHS is the mean (co-) 

variance, the second is the ‘traditional’ turbulent 
term, and the last term is the so-called 
dispersive (co-)variance, arising from the spatial 
average of the product of the spatial fluctuation 
of the time-averaged values.  

Note that the CFD model provides a steady 
state solution. However, what is steady state are 
the time-averaged variables (where the average 
is done over a time larger than the turbulent time 
scale) )(xrψ . So, for every grid point the CFD 
provides stationary time averaged values of the 
three components of the wind and the pressure, 
and, also, time averaged turbulent variances and 
co-variances )(xrφψ ′′ . 
Seven spatial averages are then performed: one 
for every building canyon unit (see Fig. 1), and 
one for the whole array of buildings. In the 
vertical the resolution of the CFD model is used 
(this is consistent with the fact that in mesoscale 
modelling the resolution in the vertical is usually 
much finer than in the horizontal). In other 
words, the volumes over which the averages are 
performed are thin slices with the horizontal 
surface presented in Fig. 1, and a vertical depth 
equal to the resolution of the CFD model.  
 
 
 
 
 

 
Figure 1. Horizontal section of the volumes over which 
the averages are performed. Orange areas are the 
cubes. 
 



3. MEAN HORIZONTAL WIND 
 
Spatially averaged horizontal wind show a quite 
simple behaviour (Fig. 2). Within the cube’s 
canopy, it increases with height in a nearly linear 
way (only the first unit has a different behaviour). 
Above the canopy, the profile is logarithmic, with 
a displacement height equal to the cube’s 
height. 
 

 
Figure 2. Vertical profiles of mean horizontal wind. H  
is the height of the cubes. 
 
4. MOMENTUM FLUXES 
 
The non-explicitly resolved vertical momentum 
fluxes are split in the turbulent component (or 
the spatial averaged Reynolds stress) >′′< wu , 
and the dispersive component >< wu ~~ , as 
explained above. As shown in Fig. 3, the 
dispersive stress has opposite sign and 
comparable magnitude to the Reynolds stress. 
This means that (at least for this array 
configuration), the dispersive flux is counter 
gradient, and cannot be considered  neglectable 
as it has been usually done. A more careful 
analysis of the results (not shown), shows that 
the responsible of the positive counter-gradient 
flux is a downward motion of slow air, linked with 
the vortex developing between the buildings. 
This means that such flux is also non-local, 
since it is the result of the building-scale vortex. 
 
5. DRAG 
 
The sink of the spatially averaged momentum 
induced by the buildings is the result of the 
pressure acting on the surfaces of the obstacle. 
Mathematically for the x component (parallel to 
incident wind direction) it can be represented as: 
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where ρ is the air density, V is the air 

volume over which the average is performed, 

obstS  is the surface of the obstacle delimiting 

the volume, P is the pressure, and xn is the x 
component of the unit vector normal to entering 
in the surface. The vertical profiles of such term 
(Fig. 4a) show that the largest loss of 
momentum happens at the first cube. The others 
cube have similar profiles in shape and 
magnitude, with an increase with height and a 
maximum at the top of the canopy. The 
traditional way to represent this term in non-
obstacle resolving models is to assume that is 
proportional to the square of the wind speed and 
the obstacle density. Using the CFD results, we 
can estimate the numerical value of the drag 
coefficient, defined as: 
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with α (in m-1) the vertical surface building 

density (facing the wind). The results presented 
in Fig. 4b show (for canyon unit 5, but similar 
results can be found for the others units, except 
the first) that this coefficient is not constant, and 
decreases with height. This is because in the 
lower part of the canopy, wind speeds are very 
weak or close to zero (Fig. 2), yielding very large 
values of the ratio. To adopt this formulation it is 
necessary to use height dependent values of CD, 
which is not very practical.  

An alternate solution to this problem can be 
found if the pressures against the obstacle 
surfaces are considered dependent not on the 
mean wind speed but on the instantaneous 
value of the wind. We propose, then to introduce 
two new velocity scales based on the turbulent 
fluctuations of wind speed, and the coherent 
motions within the cell (e. g. canyon vortices). 
The first can be estimated from the averaged tke 
as: 
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Figure 3. Vertical profiles of the spatially averaged Reynolds stress (a), and the dispersive stress (b). 
 
 

 
Figure 4. a) Vertical profiles of drag term. b) vertical profiles of Cd and Cdmod (see text) for canyon unit 5. 
 
 
The second can be estimated from the 

dispersive variances defined above, as 
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Where with the symbol dke we indicate 

the dispersive kinetic energy, or the kinetic 
energy due to the time averaged structures 
smaller than the grid cell. So, the expression 
for the modified CDmod can be written as: 
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As shown in Fig. 4b, the vertical profile of 
CDmod is much more regular and constant with 

height than the one derived from the original 
formulation, with values for the coefficient 
close to 0.4.  
 
6. CONCLUSIONS 

Main conclusions are: 
• Vertical profile of the time and spatially 

averaged horizontal wind increases linearly 
within the canopy and logarithmically above. 

• Dispersive momentum fluxes are 
counter gradient and cannot be neglected 
within the canopy. 

• Assuming that the drag force is 
proportional to the sum of the square of the 
mean horizontal wind speed and square of two 
velocity scales deduced from turbulent and 
dispersive motions, makes the drag coefficient 
constant with height. If only proportionality to 



the square of the mean wind is considered, the 
drag coefficient must be height dependent. 

Finally it is worth to stress that these 
results are strictly valid only for the cube array 
configuration considered. However we believe 
that the knowledge of the behaviour of the flow 
in such simple configuration can guide the 
interpretation of more complex and realistic 
morphologies.  
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