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1. INTRODUCTION

Remote sensing data have become important
sources of meteorological observations for nu-
merical weather prediction. Radiance, atmos-
pheric profiles, and integrated quantities derived
from satellites provide a significant source of real-
time data over data-sparse regions. While these
observations contain valuable information, their
voluminous nature can be problematic. In particu-
lar, some of the data may actually be redundant
for a data assimilation system because they do not
necessarily add information to the analysis. De-
spite increasing computational resources, the real-
time assimilation of large remote sensing data sets
into mesoscale models remains somewhat imprac-
tical. As the use radar and satellite data in opera-
tional analysis systems continues to increase, ef-
fectively handling the large volume of data be-
comes an ever-increasing challenge. In addition,
the reduction in data burden so streamlines an
analysis that it permits additional iterations opera-
tionally thereby improving the overall quality of the
analysis (Purser et al. 2000).

An issue associated with data reduction is the
retention of second order features such as gradi-
ents (e.g. Lorenc 1981, Hillger and Purdom 1990,
and Purser et al. 2000). A successful thinning al-
gorithm should reduce data redundancy while
maintaining analysis fidelity. The final analysis
should, in general closely resemble the analysis
produced from its full-data counterpart but should
be computed in a fraction of the time. Within a
given domain (at a given time) there may be wide-
spread and/or isolated regions of redundant ob-
servations. Hence, one challenge of data reduc-
tion is knowing where it is appropriate to thin the
data. Here, we propose using innovations (back-
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ground minus observation) to identify whether or
not observations themselves are redundant. By
using innovations rather than the observations
alone, we attempt to directly account for the ‘qual-
ity’ of an analysis first-guess field with respect to
the observations.

Herein, we compare three different method-
ologies for data removal: subsampling every 7th
observation (a technique common to many opera-
tional systems), a box variance method, and a
variance F-test method. We use a synthetic data
set developed to simulate satellite data on a faux
domain with topographical (i.e., land/water) fea-
tures that crudely approximate the Florida penin-
sula where relatively strong temperature (and
moisture) gradients can occur along the coast-
lines. In part, our goal is to evaluate the various
thinning algorithms by comparing analyses from
each of the methods to the truth field. It is worth
pointing out that this approach may not necessar-
ily be optimal in the context of producing a set of
initial conditions that minimize forecast error.
Rather, the approach presented here attempts to
minimize analysis error.

2. THE SYNTHETIC DOMAIN
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Fig. 1. Truth field for synthetic domain.



To demonstrate how a thinning algorithm
might work with real data, we use a synthetic data
set on a domain that resembles a typical 2-m
land/sea temperature gradient scenario over the
Florida peninsula (see Fig. 1). The domain is a
700 x 700 unit box with a 4-unit-resolution analysis
grid (i.e., 30,625 grid points). The simulated pen-
insula is relatively warm and flanked by sharp gra-
dient regions adjacent cooler and homogeneous
surroundings representative of the ocean. Coastal
regions are those located between 220 and 250
units and 450 and 480 units along the abscissa.
The gradient is 7.5°/1 unit. Ocean regions are
areas located less than 220 units and greater than
480 units on the abscissa, and the land region is
located between 250 and 450 units.

Although unrealistic, for simplicity we assume

that the synthetic background field is constant eve-
rywhere with a value consistent with that of the
ocean region. Approximately 7,800 observations
with resolution of 8 units are evenly spaced across
the domain to simulate the high-density common
in remote sensing data (see Fig. 2a). The obser-
vations are defined by sampling the truth field and
adding random Gaussian error of + 1°.

3. THE THINNING ALGORITHMS

As previously mentioned, three distinct thin-
ning methodologies are tested. A comparison of
these methods follows. Fig. 2 shows observation
locations of the full data set and each of the
thinned data sets used herein.
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Fig. 2 Data fields used for testing: a) full data set (7,744 points), b) thinning by subsampling method (1,107 points),
c) thinning by box variance method (980 points) (variance threshold = 0.465), and d) thinning by IDT (1,000 points)

(significance level = 0.1; variance threshold = 0.099).
3.1 Subsampling Method

The subsampling thinning approach system-
atically retains every 7th observation (e.g. Fig. 2b).

3.2 Box Variance Method

For the box variance method, the synthetic

domain is divided into 324 boxes. The algorithm



prescribes a thinning radius to each box based on
the variance of the innovations within that box
whereby observations located within the given ra-
dius are combined to form a superobservation.
The superobservation is created by systematically
combining (via linear interpolation to an equidis-
tant point) pairs of observations that are the statis-
tical average of the two original values. Once an
observation is used to create a superobservation,
it is removed from the data set. This process con-
tinues until no observation (or superobservation)
pairs are within the predetermined thinning radius.

In the presence of a gradient (and constant
background field), we want to retain more of the
observations as to better resolve the gradient. As
a result, in areas of high variance, the thinning
radius is small, and in areas of lower variance, the
thinning radius is such that only one representa-
tive observation will remain for each box. In an
effort to ensure comparable statistics for each of
the methods, the box innovation variance thresh-
old (i.e. the variance level whereby observation
removal is triggered) is selected to retain approxi-
mately 1000 observations. Fig. 2c shows the
thinned field for the box variance method.

3.3 Intelligent Data Thinning Algorithm

The Intelligent Data Thinning (IDT) algorithm
(Ramachandran et al. 2005) searches for regions
with high spatial frequency (large variances) and
keeps all the data points from these regions. Sub-
sampling is performed on regions with low spatial
frequency (low variances) to thin the data to a rep-
resentative point by recursively dividing the data
into four quadrants. For each quadrant, the algo-
rithm then calculates an objective measure. If the
objective measure is greater than the user-
specified threshold, the algorithm continues by
dividing that quadrant into four sub-quadrants, and
repeats this procedure for each of the sub-
quadrants. This process continues until one of
two criteria are met: 1) if the objective measure is
less than the user threshold, then the algorithm
terminates that recursive path and the center data
point of the quadrant is used as the representative
thinned value, or 2) the recursion reaches the low-
est level where the quadrant contains just four
points. For the latter condition, the algorithm
saves all four points.

The objective measure used in the IDT algo-

rithm is the statistical F-test, which evaluates the
hypothesis that two sample distributions have dif-
ferent variances by evaluating the null hypothesis
that their variances are consistent. A hypothetical
data region with a variance based on the product
of the user-specified threshold and the global
mean is compared against the variance of each of
the data quadrants during the recursion. The al-
gorithm calculates the F-test probability using the
size of the quadrant for the degrees of freedom. If
the F-test probability is within the acceptable limit,
the null hypothesis holds, meaning the variances
are similar. In this case, the algorithm thins the
quadrant and the recursion terminates. In the
case where the null hypothesis fails, the algorithm
continues to perform the recursion on the next
level of quadrant decomposition.

4, KALNAY ANALYSIS

All analyses are performed using an assimila-
tion scheme described by Kalnay (2003). An
analysis is produced from weighted corrections of
a background (i.e., first guess) field. The Kalnay
analysis is a variation of the Bratseth (1986) ap-
proach whereby the observation values are iter-
ated using

d, =Ad, +d,, (1)

where d, is the v" iteration of the innovation vector
and d,.; and d, are the previous and initial innova-
tion vectors respectively. A is a weighting matrix
comprised of elements

a; =8, = by +8&,r, /m, (2)

where ; is the Kronecker delta (i.e. 1ifi=j, 0ifi#
i), bj and r; are the background and observation
error covariances respectively, and mj; is an ob-
servation density matrix defined by
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where p is the number of observations. Once the
correction vector, d,, has been calculated, the grid
point analysis is obtained in one pass by
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where ¢; and ¢ are the background and result-

ing analysis values respectively for a given grid
point.

We use 20 iterations to produce a correction
vector in the experiments shown here. The error
covariance matricies are assumed to be Gaussian
with the error variance estimated directly via an
average of the squared differences between the
truth and background (or truth minus the pseudo
observations). This field is assumed to be both
spatially homogeneous and constant for each
analysis and is set to 0.0140. Defining the error
covariance matrix in this manner is applicable to
synthetic data but unrealistic for real-world appli-
cations, as truth is never known. Analyses are
performed using a spatial scaling factor of 60
units.

5. RESULTS

To quantify our results, each thinned analysis
is compared to the truth field. Fig. 3 shows differ-
ence fields between the truth field and each analy-
sis where the observations are assigned a *1°
Gaussian error. The root mean square (RMS)
error statistic between the truth the background,
and full and thinned analyses is shown in Table 2.

Because the background field is set to a con-
stant value (equal to that of the truth over the
ocean region), there is no RMS error between the
background and truth in the ocean region. For the
other regions (i.e., the coastal and land), the
background RMS errors are much larger than that
of the analyses. These regions are as defined in
Section 2. Ideally, the full data set will produce the
best analyses (i.e., smallest RMS error). This is
the case except for the analysis over the coastal
region where the IDT thinning method actually
yields the best analysis. The smaller RMS error
for the IDT thinned data is an artifact of a combi-
nation of the large scaling factor (set to 60 units)
and the resulting data distribution, which results in
a “smoother” analysis over the gradient region for
the full data experiment.

In the gradient region, the IDT method has the
smallest RMS error followed by the subsampling
and the box variance methods. One might expect
that because of the relatively coarse observation
distribution produced by the subsampling algo-
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rithm (every 7" observation) that the gradient will
not be well resolved. However, the box variance
method yields the largest RMS errors because
there are large gaps whereby data are not re-
tained by the algorithm (e.g., Figs. 2 and 3). Also,
the location of both gradients is shifted 20 units in
the box variance method. In contrast to the box
variance method, the IDT data correctly identifies
the gradient and is dense with no gaps in the gra-
dient region. The box variance method could be
improved by 1) thinning using smaller boxes to
better capture the location of the gradient and/or
2) increasing the variance threshold to add more
observations in the gradient region.

The IDT does not perform as well as the other
methods in non-gradient regions (i.e., ocean and
land) where the other thinned have small differ-
ences (-0.25° to 0.25°% e.g., Fig. 3) between the
truth and analysis. The IDT method retains less
than half of the observations over the ocean and
land regions compared to the subsampling method
(see Table 1). Even though the innovations are
correctly identified as redundant in non-gradient
regions, the data reduction should be (but is not)
accompanied by a rescaling of the analysis pa-
rameters (i.e., we retain a constant error covari-
ance and scaling factor). Ideally, as the data are
thinned, the individual observations should receive
more weight. Additionally, the analysis parame-
ters are clearly not spatially homogeneous nor are
the errors necessarily isotropic as assumed here.
These issues are currently being investigated in
order to tune the analysis to optimally account for
the reduction in data density over each region.

Table 1 Observation distribution by region for each thin-
ning method.

Ocean  Coastal Land

Full 4840 704 2200
Subsampling 692 101 314
Box Variance 361 274 345
IDT 317 561 122

6. CONCLUSIONS/FUTURE WORK

Remote sensing data are important sources of
meteorological observations over data sparse ar-
eas. The large amount of data make these data a
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Fig. 3 Difference fields (analysis minus truth) for a) the full data analysis, b) the subsampling method, c) the box vari-
ance method, and d) the IDT method. Each analysis was performed using observations with +1° Gaussian error.

Table 1 Root mean square errors between the different analyses and the truth field stratified by thinning methodol-
ogy and region.

Background vs. Truth Full vs. Truth Thinned vs. Truth

Subsampling Ocean 0.0000 0.1768 0.1992
Coastal 2.3043 0.5197 0.5246

Land 4.0000 0.2719 0.2802

Box Variance Ocean 0.0000 0.1768 0.2207
Coastal 2.3043 0.5197 0.7144

Land 4.0000 0.2719 0.3472

IDT Ocean 0.0000 0.1768 0.3282
Coastal 2.3043 0.5197 0.4944

Land 4.0000 0.2719 0.4220

viable candidate for data compression. Three dif-  a synthetic peninsula in an attempt to identify re-
ferent compression algorithms, which depend on dundant information. To evaluate impact of the
the quality of the background field (and observa-  loss of information as a result of the data reduc-
tions) and the ‘weather of the day’, are tested over  tion, a relatively straightforward statistical analysis



is applied. Our goal, in part, is to expedite the
analysis process for operational applications while
simultaneously maintaining analysis fidelity. Be-
cause we have created synthetic data, we are able
to directly gauge the quality of the resulting analy-
ses. In reality, there is no truth field and thus the
evaluation metrics are less certain (e.g., some
component of a model forecast). Unfortunately
(but not surprising) our results indicate that it can
be problematic to gauge the quality of “thinned”
analyses by using the full analysis (the latter of
which in practicality is all we have).

The impact of various data compression
methods on the resulting analyses is regionally
dependent. Over the coastal region—where me-
teorological gradients are common—the IDT algo-
rithm produces an analysis with the lowest RMS
error when compared against the truth. In con-
trast, this same method produces the analysis with
the largest RMS errors over both the ocean and
land (i.e., relatively constant innovation) regions.
The poorer performance of the more sophisticated
IDT approach over the homogeneous regions is a
direct result of failing to adjust the analysis pa-
rameters (i.e., error covariance and length scale)
which were intentionally held fixed here in order to
simplify these initial experiments.

Future work will focus on three different as-
pects including 1) tuning the analysis parameters,
2) the introduction of spatially varying analysis pa-
rameters, and 3) the transition to actual satellite
data. In terms of the latter, we intend to apply the
methods to data from the AIRS instrument aboard
the Aqua EOS platform.
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