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1.    INTRODUCTION 
 

The National Science Foundation Engineering 
Research Center for Collaborative Adaptive Sensing 
of the Atmosphere (CASA) is developing a 
revolutionary new paradigm for overcoming 
fundamental limitations in current radar technology 
such as the inability to sample the lower parts of the 
atmosphere (McLaughlin, 2005).  CASA was created 
in fall 2003 and is led by the University of 
Massachusetts at Amherst with several partners 
including the University of Oklahoma, Colorado State 
University, and the University of Puerto Rico at 
Mayaguez.  CASA is establishing a system of 
distributed, collaborative, and adaptive sensor 
(DCAS) networks that are unique because they can 
dynamically adjust their scanning strategies and other 
attributes collaboratively with other CASA radars to 
sense multiple atmospheric phenomena while at the 
same time meeting multiple end user needs. 

In the first phase of its research program, CASA 
is placing test beds of small, inexpensive, low-power 
Doppler weather radars on existing infrastructures, 
such as cell phone towers, to test the DCAS concept.  
This network, called NetRad, will consist of four dual-
polarization, mechanically-scanning Doppler radars 
that will be operating in central Oklahoma beginning 
in late winter of 2005.  By 2008, the network is 
expected be expanded and include phased-array 
radars.   

The DCAS networks are designed to overcome 
the fundamental limitations of current approaches to 
sensing and predicting atmospheric hazards.  
Distributed refers to the use of large numbers of solid-
state radars that are spaced appropriately to 
overcome blockage due to the Earth�s curvature, 
resolution degradation caused by beam spreading, 
and large temporal sampling intervals resulting from 
today�s use of mechanically scanned antennas. 

The radars can operate collaboratively by means 
of coordinated targeting of multiple radar beams 
based on atmospheric and hydrologic analysis tool 
such as detection, predicting, and tracking algorithms. 
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By utilizing this collaboration, the system is able to 
determine needs and allocate resources such as 
radiated power, beam position, and polarization 
diversity towards regions of the atmosphere where a 
particular threat exists.  The adaptive capabilities refer 
to the ability of the CASA radars and the associated 
computing and communications infrastructure to 
rapidly reconfigure in response to changing conditions 
in a manner that optimizes the response to competing 
end user demands.  For example, this system could 
track tornadoes for public warning while 
simultaneously collecting information on the parent 
storm and providing quantitative precipitation 
estimates for input to hydrologic prediction models. 

The objective of this paper is to develop a 
technique to apply, test, and analyze a sampling 
strategy to provide preliminary results of how to use 
the CASA radars to optimally adaptively sample the 
atmosphere.  Although it may seem logical to simply 
scan a real tornado with as fine a temporal and spatial 
sampling as possible, that approach may be 
unnecessary and waste resources, especially when 
other phenomena are present simultaneously and 
competing for the same resource.   

 We approach this problem using an idealized, 
analytic vortex to serve as a proxy for a tornado.  We 
then sample this flow field, as if it were being 
observed by one CASA radar, and use variational 
techniques to fit the pseudo-observations to the 
models of an idealized tornado vortex. We seek the 
minimum in the cost function, which defines the best 
(in a least squares sense) fit between model and 
pseudo-observations, across a variety of parameters 
including but not limited to azimuthal sampling 
interval, number of vertical levels sampled, distance 
of the radar from the vortex, and the number of radars 
available.  This approach is similar to that used by 
Wood (1997) in the context of NEXRAD.  In this 
paper, we evaluate the azimuthal sampling interval 
and the distance of the radar from the center of the 
vortex. 
 
2. RANKINE COMBINED VORTEX 
APPROXIMATION 

We use an approximation to the Rankine (1901) 
combined vortex (RCV) to prescribe the flow field for 



our simulated tornado.  The RCV has a rotational 
velocity that increases linearly from zero at the center 
of the vortex to a maximum at the core radius. 
Beyond the core radius the rotational velocity 
decreases, with the velocity being inversely 
proportional to the distance from the rotation center.  
This traditional form of the RCV contains a cusp at the 
radius of maximum winds that represents a 
discontinuity (Figure 1).  In order to obtain the 
Rankine combined vortex approximation (RCVA), we 
first consider the traditional RCV: 

 
)(max rfVv =            (1) 

 
where maxV is the maximum tangential wind and 
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where r is the radial distance to the vortex center and 
R is the core radius at which maximum tangential 
wind Vmax occurs.  A graph of this function (Figure 1) 
illustrates the discontinuity at the normalized radius of 
1. 
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Figure 1:  Tangential velocity in a Rankine combined 
vortex with cusp at a normalized radius of 1. 
 

Because of the discontinuous nature of the first 
derivative of the RCV, difficulties in solving the cost 
function occur in the retrieval technique.  In order to 
overcome this difficulty, a new function with no 
discontinuity in the core radius yet retains the features 
of the RCV can be introduced (White, personal 
communication): 
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where n =1,2�.  After testing various combinations of 
(3) with different values of n , the approximating 
function that best fits (2) and that is used herein as 
the RCVA is: 
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Figure 2 shows a comparison of the approximation�s 
fit (labeled as �(phi1+phi2)/2�) to the traditional RCV 
(labeled as �RCV or f(r)�), as well as the case where 
n =1 and n =2 for Equation (3). 
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Figure 2:  Comparison of RCV (Equation 2) to the φn 
(Equation 3) with varying values of n, and the RCVA 
(Equation 4).  

 
In this paper, the RCVA idealized flow will serve 

as the model to which the flow generated by either φ1 
or φ2 is fit using variational techniques.  A similar 
approach was used by Wood (1997).    
 
3.    VARIATIONAL RETRIEVAL TECHNIQUE 
  
 In order to determine how to best observe the 
tornado proxy with CASA radars, a one dimensional 
analysis technique is used that is based on the 
variational principle used by Wood (1997).  This 
variational principle optimally estimates the maximum 
tangential wind speed, Vmax, and core radius Rmax at 
which this wind speed occurs.  Simulated Doppler 
velocities are generated by the combined NSSL 
Doppler radar simulation and retrieval technique; the 
velocities correspond to the RCVA idealized flow 
discussed in section 2 but are sampled in a manner 
that includes beam broadening, weighting along the 
beam center, etc.  Simulation of the radar sampling 
process does not directly follow that of an actual radar 
because the mean Doppler velocity is calculated by 
averaging the Doppler velocity components within the 
effective radar beam.  Normally, the radar pulses are 
averaged to produce a simulated mean Doppler 
velocity value. The program retrieves the maximum 
tangential velocity and the core radius of an 



axisymetric vortex from a single Doppler velocity 
signature of the vortex.  
 In order to use the variational technique, we must 
first calculate initial guesses of Vmax and Rmax that will 
be used to solve a set of nonlinear equations . By 
solving the set of nonlinear equations, we can then 
solve a set of linear equations using Gaussian 
elimination to get the retrieved values of Vmax and 
Rmax.  
 There are several steps in determining the initial 
guesses of Vmax and Rmax that serve as the input 
values to the cost function.  These guesses, known as 
rotV  and aR ,must be close enough to the solution to 

give convergence and are computed from the Doppler 
velocity measurements as: 
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where rotV is the rotational velocity of the vortex and 
∆ dV is the difference between the incoming ( −V ) and 
outgoing velocity ( +V ) peaks of the vortex and is 
defined as: 
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The apparent radius, aR , is given by: 
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where aD is the apparent diameter and is the 
distance between the incoming and outgoing velocity 
peaks. 
  After specifying input values such as beamwidth 
and azimuthal interval, Doppler velocity values at 
range, elevation, and azimuth subpoints within the 
beamwidth volume and the two-way antenna pattern 
can be calculated.  From this, the radial distance, r, 
from the circulation center to the subpoints of 
beamwidth volume center in Cartesian coordinates 
can be computed. 
 Using the radial distance r, the radial variation of 
the tangential component of the RCVA can be found 
by using 1=n and 2=n : 
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With the tangential component, the mean Doppler 
velocity can be calculated within the beamwidth 
volume. Now the initial guesses for Vmax and Rmax are 
calculated. 
 These initial guesses will be used in the 
variational technique where Newton�s Method is used 

to solve a set of nonlinear equations. Newton�s 
Method essentially estimates the partial derivatives of 
the function by difference quotients, where a small 
change in the value of the variable is made called 
delta (Gerald and Wheatley, 1984).  This small 
change in the value of the function is then divided by 
the change in the value of the variable; this process is 
done for each variable in each function.  When using 
this technique, the initial guesses for the values of the 
variables must be close enough to the solution to give 
convergence.  It is important to note also that delta 
should be small enough to give a realistic 
approximation to the partial derivative but not so small 
as to lead to an extreme amount of round-off.   
 The variational technique includes a cost function 
defined as: 
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where iV is the modeled wind profile,
~
iV is the 

observation, and i is the total number of observations.  
iV is given by: 
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In (10), G is the Gaussian weighting function 
representing the shape of the radar beam, Z is 
reflectivity (assumed to be uniform in this paper), γ is 
the angle between the radar viewing direction at a 
target point and the tangential velocity and φ is the 
elevation angle. To determine the optimal estimate, 
the cost function J , which is a function of Vmax and 
Rmax, is minimized.  A necessary condition for this 
minimization is: 
 

max

~

max
20

V
VVV

V
J i

i
i ∂

∂










−==

∂
∂

∑ i         (11) 

 

               
max

~

max
20

R
VVV

R
J i

i
i ∂

∂










−==

∂
∂

∑ i                (12) 

 
 From (11) and (12), we can see that two more 
partial derivatives are needed: 
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 Contained in (13) are two final partial derivatives 
that involve the RCVA discussed in section 2.  Recall 
(2):  
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Also recall that the best approximation is when 1=n  
and 2=n , which results in: 
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Therefore, with some simplications: 
 

         222

23
1

)(
22
rR
rRr

R +

−=
∂
∂φ          (17) 

 

    244

652
2

)3(
)1212(

rR
rRrR

R +

−=
∂
∂φ                     (18) 

 
 The nonlinear equations were solved for the 
values of the computed partial derivatives of each 
function for each variable. The next step in retrieving 
Vmax and Rmax is to solve a set of linear equations 
using Gaussian elimination with partial pivoting.  
Because the set of linear equations are all augmented 
to the coefficient matrix and all the solutions are 
acquired at once, the set of equations can be solved 
with multiple right hand sides.  The solutions are 
returned in the space of the augmentation columns 
(Gerald and Wheatley, 1984).  From this routine, 
retrieved values of Vmax and Rmax are obtained. 
 
4. DESCRIPTION OF EXPERIMENT 
 In this paper, we present results from prescribed 
changes in the parameters listed in Figure 3.  We 
assume one virtual CASA radar is sampling the 
volume with uniform reflectivity across the vortex and 
that the data are perfect.  The sampling will be done 
as though a mechanically scanning radar (MSR) and 
a phased array radar (PAR) is sampling.  Here the 
MSR is assumed to be continuously scanning and 
takes into account beam smearing due to antenna 
rotation. Since the PAR can sample discretely by 
turning on and off elements on the antenna, no beam 
smearing is assumed. 
 
 
 
 
 
 
 

Range (km) 2.5-30 in increments of 
2.5 

Azimuthal Sampling 
Interval 

(delta azimuth) 

Mechanically scanning: 
1°,2° 
Phased array: 1°,2°,4° 

Vortex radius Rmax (km) 0.5,1.0,1.5 
Vortex max wind speed 

Vmax (m/s) 
40,60,80,105,130 

Figure 3: Parameters varied throughout experiment 
and the ranges over which they are varied. 

  
 There are several input values to the retrieval 
program that must be considered.  These include the 
model the observations will be generated from, an 
option for smoothing or no smoothing, and an option 
for noise or no noise added to the data.  The effective 
beamwidth is another value inputted into the retrieval 
program.  Effective beamwidth is the azimuthal 
broadening of a horizontally rotating beam at a given 
range, and depends on three radar parameters: 
antenna rotation rate, the time interval between 
pulses, and the number of pulses transmitted (Doviak 
and Zrnić, 1993, 193-197).  For a radar antenna with 
a two degree beamwidth that collects data at two 
degrees azimuthal intervals, the effective beamwidth 
is computer to be 2.90°. Effective beamwidth was only 
used for the MSR and not the PAR since the latter is 
assumed to be stationary for our case. The elevation 
angle used in this paper was assumed to be zero 
degrees; we also assume that the simulated 
measurements are free of noise. 
  
5.  RESULTS 
 The results presented in this paper were obtained 
by varying the parameters listed in Figure 3 in the 
variational algorithm, leading to hundreds of 
experiments.   These results help to illustrate that the 
amount of information collected can be maximized 
while using a minimum amount of resources. A few 
results are presented in Figures 4-7.  Percentage 
error is used (relative error times 100) as a method of 
comparison for these results. 
 Figure 4 shows a comparison between a 
beamwidth of one degree and two degrees for a 
vortex with a radius of maximum winds (Rmax) of 
0.5km and 1km for the MSR.  A smaller beamwidth 
produces a smaller percent error because its increase 
in beamwidth with range is smaller compared to the 
two degree beamwidth. 
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MSR for Rmax=0.5km and 1km. 
  
 Figure 5 shows an example of PAR 
oversampling, in which the azimuthal sampling 
interval is one degree.  Oversampling using an 
azimuthal sampling interval of one degree means that 
for a two degree beamwidth, the center of the 
beamwidth of a sample is one degree away from the 
center of the beamwidth of the preceding sample and 
there is overlapping in sampling.  This is compared to 
the MSR, which has an azimuthal sampling interval of 
two degrees.  Although the smallest percent error is at 
a longer range for the PAR than the MSR, the PAR 
overall percent error, especially at long ranges, is 
smaller. 
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Figure 5:  PAR oversampling (delta azimuth = one 

degree) compared to MSR sampling (delta azimuth = 
two degrees). 

 
 Figure 6 shows an example of PAR 
undersampling in which the azimuthal sampling 
interval is four degrees.  Undersampling using an 
azimuthal sampling interval of four degrees means 
that for a two degree beamwidth, the center of the 
beamwidth of a sample is four degrees away from the 
center of the beamwidth of the preceding sample and 
there is no overlapping in sampling.  This PAR 

sampling is compared to the MSR with an azimuthal 
sampling interval of two degrees. Using less 
resources by PAR undersampling shows this adaptive 
sampling method still results in a low percent error 
that decreases to near zero at a range of 22.5km.  
Beyond that range, the magnitude of the percent error 
increases, but this region will also be in another 
CASA radar�s scanning area, helping to compensate 
for this decrease in retrieval capability. 
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Figure 6:  PAR undersampling (delta azimuth = 4 

degrees) compared to MSR sampling (delta azimuth = 
two degrees). 

  
  In general, preliminary results for these CASA 
radar simulations show that using adaptive sampling 
techniques, such as undersampling, may be able to 
minimize the resources used while maintaining the 
goodness of fit. 
  
 
6.  FUTURE WORK 
 The next phase of this research will be to use 
several more parameters that can be changed also, 
including the number of radars adaptively sampling a 
vortex, adding translation to the tornado, the number 
of vortices, and possibly using non uniform reflectivity.   
 Other idealized flows will be used as well in the 
retrieval program, including the Burgers(1948)-
Rott(1958) vortex (BRV).  These flows will be used to 
create the flow as well as serve as the model to fit.  
The same parameters that are being changed for the 
RCVA case will be used for these flows as well.  
Metrics for optimization such as a cost function, 
probability density function, and information content 
will also be used. 
 
 
7.  CONCLUSIONS 

CASA is developing a revolutionary new 
paradigm for overcoming fundamental limitations in 
current radar technology such as the inability to 
sample the lower parts of the atmosphere.  To 
facilitate this, CASA is establishing a system of 
distributed, collaborative, and adaptive sensor 
(DCAS) networks that are unique because they can 
dynamically adjust their scanning strategies and other 



attributes collaboratively with other CASA radars to 
sense multiple atmospheric phenomena while at the 
same time meeting multiple end user needs.  

 The purpose of this paper is to show preliminary 
results of how to best use CASA radars and the 
DCAS idea in order to find the optimal sampling 
strategy for the radars.  An optimal sampling strategy 
would maximize the amount of information that can be 
extracted from the atmosphere while using the 
minimum amount of resources to meet end user 
needs. Preliminary results for these CASA radar 
simulations show that using adaptive sampling 
techniques, such as undersampling, may be able to 
minimize the resources used while maintaining the 
goodness of fit. 

 
8. References 
 
Burgers, J. M., 1948: A mathematical model 

illustrating the theory of turbulence.  Adv. Appl. 
Mech.,1,197-199. 

Doviak, R.J., and D.S. Zrnić, 1993: Doppler Radar 
and Weather Observations. 2d ed. Academic 
Press, 562 pp. 

Gerald, C.F., and P.O. Wheatley, 1984: Applied 
Numerical Analysis. 3d ed. Addison-Wesley 
Publishing Company, 139-158. 

McLaughlin, D., V. Chandrasekar, K. Droegemeier, S. 
Frasier, J. Kurose, F. Junyent, B. Philips, S. 
Cruz-Pol, and J. Colom, 2005: Distributed 
Collaborative Adaptive Sensing (DCAS) for 
improved detection, understanding, and 
predicting of atmospheric hazards.  Preprints, 
85th AMS Annual Meeting, San Diego, CA. 

Rankine, W.J.M., 1901: A Manual of Applied 
Mechanics. 16th ed. Charles Griff and Col, 680 pp 

Rott, N., 1958: On the viscous core of a line vortex.  
Z. Angeq. Math. Physik, 96, 543-553. 

Wood, V.T., 1997: Retrieval of mesocyclone diameter 
and peak rotational velocity from range-degraded 
Doppler velocity signatures. Preprints, 28th Conf. 
on Radar Meteorology, Austin, TX, Amer. 
Meteor.,311-312. 

 
 


