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1. INTRODUCTION  
 

Results of any computations are of practical use 
only if information about their accuracy is also 
available. This is especially true in forecasting 
hurricane paths, where the prediction accuracy is of 
vital importance. Yet, most current forecasts lack such 
information 

One way to assess the accuracy of a forecast is to 
identify and describe all sources of uncertainty (see 
Oberkampf et al. 2004, and the references therein.) 
The attractiveness of this idea is clear. If one could 
identify and describe all uncertainty sources, 
contributions from at least some of them could be 
eliminated or reduced, thereby making simulations 
more credible. Uncertainties and errors in 
 computational results on hurricane forecasts originate 
from various sources -- failure of a climate model to 
correctly describe the atmospheric physics and the 
interaction between the atmosphere and the ocean; 
stochastic nature of model parameters; errors 
associated with the discretization and algorithmic 
approximations, to mention just a few. It could be an 
impossible task to identify all uncertainty sources 
though. Even if some sources of uncertainty are 
identified, there still remains the problem of describing 
their contributions, as these sources might affect one 
another in complicated and generally unknown ways. 
For instance, decreasing the contribution from one 
source can increase uncertainty from other sources, 
resulting in increased total uncertainty. In this sense, 
one has to be aware that incorporating additional 
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model equations in a climate model for the sake of a 
better description of physics may not always result in 
more accurate forecasts. Uncertainty in computational 
results caused by new equations and parameters can 
exceed benefits of a better physical model. Evaluation 
of the effectiveness of modifications introduced in a 
climate model and quantitative comparison of the 
performance of different models requires a measure 
for quantifying the total uncertainty in hurricane 
forecasts, that is, the sum of contributions from all 
uncertainty sources. To find such a measure is one of 
the objectives of our research. 

The total uncertainty in flow simulations has 
features of both aleatory and epistemic uncertainties 
currently recognized. Aleatory uncertainty is due to 
stochastic influences (e.g., random noise) and cannot 
be reduced. Epistemic uncertainty is subjective and 
originates from incomplete knowledge at any stage of 
modeling or simulation. Increasing one’s knowledge 
reduces epistemic uncertainty. As both aleatory and 
epistemic uncertainties are intricately interwoven in a 
hurricane forecast, one needs a statistical theory that 
can handle them together to quantify their impact on 
forecasts.  

There are several mathematical theories that 
describe uncertainty and provide its measures -- 
probability theory, possibility theory, and evidence 
theory. Probability theory, for instance, is better suited 
to describe aleatory uncertainty. Possibility theory 
(Dubois&Prade 1988) was developed mainly to 
describe epistemic uncertainty. An extensive literature 
exists (see e.g., Klir& Wierman 1998), where various 
uncertainty theories are compared, their relations are 
established, and their advantages and limitations are 
discussed. Evidence theory (Shafer 1976a) is among 
the well-established theories that can handle both 



types of uncertainty and does not require their 
separation. In fact, probability and possibility theories 
are branches of evidence theory. The theory works 
with limited information and new data can be 
incorporated as it becomes available. These features 
make evidence theory attractive for application to 
hurricane forecasts, and the present study 
investigates the potential of using evidence theory to 
provide a quantitative assessment of forecast 
accuracy. Unfortunately, there are very few practical 
applications of evidence theory and they differ 
considerably from the one addressed here. 
Previously, we developed an approach based on 
evidence theory to quantify uncertainty in turbulence 
computations (Poroseva et al. 2005). Results of 
testing the approach on a turbulent flow encouraged 
us to apply a similar approach to hurricane path 
forecasts with appropriate extension and modification.   

Evidence theory provides the necessary tools not 
only to quantify the forecast uncertainty, but also to 
fuse the results of different forecasts. To develop a 
reliable procedure for combining different forecasts 
based on evidence theory tools is another objective of 
our study. The idea of improving the overall credibility 
of hurricane path predictions by combining results of 
several forecasts is not new. The multimodel 
superensemble technique (Williford et al. 2003) is an 
example of the successful implementation of the idea. 
However, multimodel forecasts, like the single model 
forecasts, do not provide information on the forecast 
accuracy. The present approach provides the 
quantitative assessment of the forecast accuracy and 
differs completely from other multimodel techniques in 
its mathematical foundation.  

 
2. MATHEMATICAL BACKGROUND 
 

In this paper, we follow the axiomatic approach of 
evidence theory given by Shafer (1976a). A 
comprehensive exposition of the foundations of 
evidence theory may also be found in Sentz & Ferson 
(2002), Shafer (1976b, 1987, 1990), and Yager et al. 
(1994).  In the interest of space, a brief description of 

the basic concepts of the theory is provided here for 
the sake of completeness.  

Evidence theory provides two basic tools for 
quantifying uncertainty in simulations and improving 
predictions: i) a tool for representing the degree of 
belief (confidence) that may be attributed to a given 
proposition on the basis of given evidence, and ii)  a 
tool for combining evidence from different sources 
(Dempster’s rule). Let X denote a quantity and X the 
finite set of its possible values. Then, propositions can 
be of the form “the true value of X is in A,” where A is 
a subset of X. Whenever A is interpreted as a 

proposition, its complement A  (the set of all elements 
of X not in A) must be interpreted as the proposition's 
negation. The set of all subsets of X, the power set, 
includes the empty set ∅  (corresponding to a 
necessarily false proposition, since the true value 
cannot lie in ∅ ) and the entire set X (corresponding 
to a necessarily true proposition, since the true value 
is assumed to be in X).  

In evidence theory, the impact of evidence on our 
belief in different propositions is described by three 
related functions -- the basic probability assignment 
function (m), the belief function (Bel), and the 
plausibility function (Pl). The basic probability 
assignment function assigns a number ( )m A to each 

subset A of X such that ( ) 0m ∅ = for the empty set ∅ , 
and the sum of basic probability assignments (BPAs) 
for all subsets A of X is equal to unity: 

 
                      ( ) 1

A
m A

⊆
=∑

X
.                            (1) 

 
The quantity ( )m A  is the measure of the belief that is 

committed exactly to A but not to any particular subset 
of A. The belief in A is based on available evidence 
that supports exactly A. As m(A) is a measure of the 
belief committed exactly to A, it does not represent the 
total belief committed to A. In evidence theory, a 
measure of the total belief (degree of belief) in A is 
defined as 
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reflecting the fact that the evidential support 
committed to one proposition is committed to any 
subset containing it. A subset A of X is called a focal 
element of a belief function Bel over X if ( ) 0m A > . 

The union of all focal elements of a belief function is 
called its core. The plausibility measure is related to 
the basic probability assignment m: 

 

                  ( ) ( )
B A

Pl A m B
∩ ≠∅

= ∑ .                     (3) 

 
Belief and plausibility measures are related by the 

equation ( ) 1 ( )Pl A Bel A= − . Some properties of these 

measures are 
 

( ) ( ) 0Bel Pl∅ = ∅ = , 

( ) ( ) 1Bel Pl= =X X , 

( ) ( )Bel A Pl A≤ ; 

if B A⊆ , then ( ) ( )Bel B Bel A≤   and ( ) ( )Pl B Pl A≤ , 

( ) ( ) 1Bel A Bel A+ ≤  and ( ) ( ) 1Pl A Pl A+ ≥ . 
 
The last two expressions show that the two measures 
are nonadditive, that is, the sum of belief measures 
and the sum of plausibility measures are not required 
to be equal to unity. It is a consequence of uncertainty 
in available evidence. When evidence supports with 
certainty mutually exclusive propositions, the two 
measures coincide and the additivity rule is recovered.  

Notice that the way one defines subsets A of X 
and links actual evidence to their basic assignments 

( )m A  depends on the problem being considered, 

one’s current limited knowledge, and available 
evidence. Additional information can change the set of 
propositions and how evidence determines our degree 
of belief ( )Bel A  in these propositions.  

Dempster’s rule is a technique for combining 
evidence from different sources to improve 
predictions. Mathematically, application of Dempster’s 
rule to two or more belief functions over the same set 
X yields a new belief function called their orthogonal 
sum. In the simplest case of two belief functions 1Bel  

and 2Bel  with basic probability assignment functions 

1m  and 2m , Dempster’s rule provides the orthogonal 

sum 
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where i jC A B= ∩ ; 1,..., kA A  and 1,..., kB B  are focal 

elements of 1Bel  and 2Bel , respectively. The core of 

the belief function given by m is equal to the 
intersection of the cores of 1Bel  and 2Bel . The belief 

function ( )Bel C  resulting from the combination can 
then be obtained from m using Equation (2). 
 For valid use of Dempster’s rule, belief functions 

1Bel  and 2Bel  must satisfy some conditions (Shafer 

1976a): they should not strictly contradict each other 
and they should be based on independent sources of 
evidence. We discuss how to satisfy these 
requirements for the specific problem being 
considered in the paper in the following sections.   
 
3. EVALUATION OF MODEL ACCURACY 

 
In this section we describe a new technique based 

on the basic concepts of evidence theory to evaluate 
the accuracy of a climate model using available 
observational databases for hurricane paths. 
Specifically, uncertainty is quantified in terms of a 
basic probability assignment function (m-function) for 
intervals in which the deviation of computed results 
from observational data falls.  

The database for hurricanes from the years 1998-
2001 in the Pacific Ocean is used to quantify 
uncertainty in forecasts. The database consists of 
observational data for the hurricane position – latitude 
and longitude – at different instants and of the 
predictions by several global models of the positions 
of the same hurricanes. In the current study, we are 
using the results produced by models from two 
operational centers -- the U.S. Navy Operational 
Global Atmospheric Prediction System (NOGAPS) 



and the European Centre for Medium-Range Weather 
Forecasts (ECMRWF).   

The accuracy of the model prediction is evaluated 
by comparing the observational data for the 
latitude/longitude with the model predictions at a given 
instant. The difference between observational and 
model data, 

 

                                o mDev L L= − ,            (5) 
 

is called the deviation (Dev), where mL  denotes the 

model prediction of the latitude or longitude;  and oL   
is the corresponding observational value. All 
quantities are measured in degrees. 

Since a model can produce several independent 
forecasts for the same hurricane, we have to define 
instants at which observational and model data are 
compared and deviation values are obtained. We 

denote as o
it  an instant at which observational data 

for the hurricane position are available, where 
1,...,i s= , and s is the total number of such instants for 

a given hurricane. The time step (the interval between 
two instants) is 12 hours (12h) in the current study.  

A new forecast can be produced with different 
frequency; for instance, each 6 hours (6h), 12h or 
each day (24h).  In this study, we use data of 
forecasts produced every twelve hours. That is, the 
second forecast (f2) started 12h later than a hurricane 
itself; the time difference between third (f3) and 
second (f2) forecasts is 12h, etc. Forecast instants 
corresponding to observational data are denoted as 

fk
jt , where 1,...,j r= , r is the amount of time steps in 

a given forecast; fk is an ordinal number of a forecast: 
fk = f1, f2,…) Since at this stage, we compare 
forecasts with the observational data of hurricanes 
that have already occurred (that is, the duration of a 
hurricane is known), the duration of each consequent 
forecast decreases. For the first forecast of a 
hurricane, the number of time steps is the same as in 

the hurricane: 1
1,..., 1,..., 0fo

s st t h= + , and r s= . The k-th 

forecast is shifted by 12 ( 1)k⋅ −  hours from the start of 

the hurricane: ,..., 1,..., 12 ( 1)fko
k s s kt t k h−= + ⋅ − , therefore 

r s k= −  and the first instant of the forecast 
corresponds to the k-th instant of the observational 
data.  

Thus, for the same hurricane, we can obtain 
several deviation values (Dev-values) that 
characterize the deviation of the model data from 
observational data at a given instant of a forecast. For 
instance, for the initial moment of a forecast 

( 1 2
1 1 1 .... 0f ft t t h= = = = ), there are as many Dev-

values as there are forecasts for this hurricane. These 
Dev-values are defined as 

 

1 1( ) ( ) ( )fk fko o m
kDev t L t L t= − . 

 
At the next forecast instant, 2 1 12 12t t h h= + = ,  

 

12 2( ) ( ) ( )fk fko o m
kDev t L t L t+= − , 

 
and so on. Since, the duration of forecasts decreases 
with increasing k, the number of Dev-values 
corresponding to different forecast instants also 
decreases. We denote as 1( )Dev t  the set of all 

available 1( )fkDev t -values, 2( )Dev t  the set of 

2( )fkDev t -values etc.; there are s such sets for a given 

hurricane of s time steps. Each set carries the 
information on model accuracy at a given forecast 
instant. We can further increase the population (the 
number N of Dev-values) of each deviation set (Dev-
set) by adding the Dev-values related to all available 
hurricanes of a given year at a given forecast instant.  
Table 1 shows, as an example, the populations of the 
Dev-sets at different instants corresponding to the 
forecasts produced by the ECMRWF model in the 
years 1998-99. 



  

it , h    N, 1998 N, 1999 

0       225 302 
12     210 270 
24 180 226 
36 161 192 
48 134 161 
60 110 133 
72 93 112 
84 78 95 
96 64 77 

108 58 64 
120 51 52 

TABLE 1. The number of Dev-values in Dev-sets at 
different forecast instants obtained for the ECMRWF model 
results in the years 1998-99. 

 
Dev-sets can be used to characterize the accuracy 

of a model at each instant.  The procedure will be 
discussed below in relation to a single instant and a 
single quantity, the latitude. At other instants, the 
procedure repeats. It also repeats for Dev-sets 
corresponding to the longitude. 

As the number of hurricanes and their duration are 
finite, the range of deviation values in a Dev-set is 
finite as well. Therefore, it is always possible to 
specify at least a single finite interval, which includes 
all Dev-values. Based on this observation, one can 
say that all available evidence (Dev-values) supports 
the proposition that the deviation of the latitude 
(computed with a given climate model using a given 
grid and numerical procedure) from the corresponding 
observational value is likely to fall inside this finite 
interval. Obviously, our proposition that evidence 
supports this specific interval is subjective and 
corresponds to the available database. More 
observational data could possibly increase the size of 
this interval.  

The single interval supported by evidence is not 
very informative. Different uncertainty sources can 
favor different ranges of Dev-values. To study the 
distribution of Dev-values (Dev-distribution), the single 
interval is divided into subintervals of uniform size 

Dev∆ , which we call the deviation step. (We assume 
the subintervals are of uniform size for the sake of 
simplicity). Each Dev-value unambiguously supports 

one of the subintervals. If the available Dev-values are 
few, or if Dev∆  is small, the Dev-distribution will be 
scattered: there may be no pronounced maximum, 
and unsupported subintervals (Dev-intervals) may 
alternate with supported ones.  As an example of the 
scattered distribution, Figure 1 shows the Dev-
distribution for the latitude at 6 60t h=  obtained with 

the 1oDev∆ =  (ECMRWF model, 2001).  
A scattered deviation distribution yields little if any 
useful information. A deviation distribution over the 
single interval and one scattered over several 
subintervals are two limits of possible Dev-
distributions, which are not very informative. We 
observe that for the purpose of the present work, the 
most useful Dev-distribution would be one that is of 
the concave type, i.e., with one subinterval with 
maximum evidence support (more Dev-values fall 
inside this subinterval) and with the evidence to 
support subintervals on both sides of this subinterval 
monotonically decreasing. Subintervals with nonzero 
support are focal elements of the Dev-distribution and 
the set of all of them constitutes its core.  

A concave Dev-distribution for a given Dev-set can 
be obtained by increasing the size of the Dev-step. 
For instance, if at 1oDev∆ =  (the smallest Dev-step 
considered in this study) the Dev-distribution is 
scattered as the one shown in Fig.1, the next step is 
to redistribute the Dev-values over larger subintervals: 

2 ,..oDev∆ =  etc. until a concave distribution is 

FIGURE 1. Example of Dev-distribution for the latitude 
at 6 60t h=  obtained with 1oDev∆ = . (ECMRWF model, 

2001). 

 



obtained. For instance, the Dev-distribution of the 
concave type for the latitude at 6 60t h=  (ECMRWF 

model, 2001) can be obtained at 2oDev∆ =  (see Fig. 
2). Notice, that constructing a concave Dev-
distribution, we consider fluctuations in the number of 
Dev-values supporting a single Dev-subinterval as a 
noise, if this number falls in the range between zero 
and 5% of the maximum of the Dev-distribution. As 
such, the fluctuations do not influence our choice of 
the Dev-step. 

Although there is no guarantee that for any 
engineering problem there exists such a Dev∆  that 
allows one to construct the Dev-distribution with the 
desirable property of a concave shape, it turned out to 
be the case for the hurricane forecasts.  

A concave Dev-distribution is then used to build an 
m-function. We define the BPA for each subinterval as 
the ratio of the number n of Dev-values falling inside 
the subinterval to the total number N of Dev-values in 
the Dev-set: 

 
               ( ) /l lm Dev n N∆ = ,            (6) 

 
where l  is the index over focal elements of the Dev-
distribution. In this case, because all subintervals are 
disjoint and there is no ambiguity in how evidence 
supports different subintervals, the BPA for each 
subinterval is equal to the degree of belief and the 
degree of plausibility (see expressions (2)-(3)) 

 
          ( ) ( ) ( )l l lm Dev Bel Dev Pl Dev∆ = ∆ = ∆ .           (7) 

 
In deviation distributions constructed in such a 

manner, the subinterval with the maximum support 
shows how far the uncertainties and errors in the 
computational procedure (which includes model 
uncertainty, grid resolution, observation error, etc.) will 
likely force the forecast results to deviate from reality 
(represented by observational data). Obviously, the 
most favorable scenario would be the one where the 
most supported subinterval includes the zero Dev-
value. Another feature of a Dev-distribution to be 
considered is the size of its core. The smaller this 
size, the more focused is the combined contribution of 
uncertainty sources and better is the accuracy of the 
forecast. The size of Dev∆  indicates whether 
evidence supports one subinterval over others. The 
smaller Dev∆  one can choose without compromising 
the properties of the Dev-distribution, the better the 
accuracy of predictions that can be achieved, as will 
be shown in the following sections.  

All three characteristics – the location of the 
maximum, the size of Dev∆  and the total range of 
Dev-values -- of Dev-distributions depend on the 
forecast instant it , quantity (latitude/longitude), year, 

and model. For example, Tables 2-3 illustrate the 
dependence of the Dev-step on these parameters. 
Thus, these three characteristics can be used to 
compare, for instance, the accuracy of forecasts 
produced by different models and the effectiveness of 
changes in a model and computational procedure. 

 
Year 1998 1999 

it , h   Latitude Longitude Latitude Longitude 

0      1 1 2 1 
12    3 2 2 2 
24 2 3 2 2 
36 3 2 3 2 
48 3 4 2 2 
60 4 5 2 3 
72 2 3 3 7 
84 4 5 2 3 
96 8 6 3 5 

108 12 5 3 6 
120 4 4 4 7 

TABLE 2. The size of Dev∆   for the ECMRWF model 

 
FIGURE 2. The concave Dev-distribution for the 

latitude at 6 60t h=  obtained with 2oDev∆ = . 

(ECMRWF model, 2001).  



Year 1998 1999 

it , h    Latitude Longitude Latitude Longitude 

0       2 2 1 1 
12     4 2 1 1 
24 4 2 1 2 
36 5 2 1 3 
48 5 2 4 7 
60 7 3 2 3 
72 9 9 7 5 
84 5 4 3 3 
96 9 13 3 5 
108 7 4 5 6 
120 8 5 4 8 

TABLE 3. The size of Dev∆   for the NOGAPS model 
 

4.  APPLICATIONS OF M-FUNCTIONS 
 

In this section we will discuss how m-functions can 
be used  

- to study variation of the model accuracy with 
the forecast duration; 

- to evaluate the effectiveness of annual 
modifications in a model; 

- to compare the performance of different 
models (here ECMRWF and NOGAPS 
models) in the years 1998-2001. 

 

4.1 Accuracy Variation with the Forecast Duration 
 

With each time step, the accuracy of hurricane path 
forecasts drops. This dynamic does not depend on the 
year of the forecast, the climate model, or the quantity  
(latitude/longitude) considered, and is quantitatively 
represented by the increase in the size of the Dev-
step (see, for example, Tables 2-3).  This tendency is 
predominantly the result of the decrease in the 
model‘s capability to correctly describe the physics of 
hurricanes. One could argue that the increase in the 
size of the Dev-step could also be caused by the 
decrease in populations of the Dev-sets observed with 
each consequent time step (see Table 1). Our study 
showed, however, that one could diminish fluctuations 
in Dev∆  by increasing the size of populations, but not 
overcome this tendency.  

Obviously, a preferred model would have the 
smallest and least divergent Dev-step for both spatial 

coordinates. The following two sections discuss the 
application of the Dev-step for comparing the 
performance of the same model after annual 
modifications and the performance of different models 
during the same year.  

 

4.2 Effectiveness of annual model modifications 
 
Tables 2 and 4 show the variation in the size of 

Dev-step depending on the year (1998-2001) and the 
forecast duration for the ECMRWF model.  Again, the 
size of the population of a Dev-set is not the main 
reason for variations in Dev∆ . For instance, at 1 0t h= , 

populations are the largest for any year, model and 
quantity. However, Dev∆  at 1 0t h=  is not necessarily 

the smallest one (one degree is the smallest Dev-step 
in this study). For instance, the size of the population 
of the Dev-set for the ECMRWF model at 1 0t h=  in 

the year 2001 is equal to 256 and at 4 36t h=  (the 

same year) is 184. Yet, the Dev-step for the latitude is 
smaller at 4 36t h= . As the other example, compare at 

1 0t h=  the Dev-steps for the latitude ( 2oDev∆ = ) and 

the longitude ( 3oDev∆ = ) obtained for the ECMRWF 
model in the year 2000 with the corresponding values 
of the year 1998 (Table 2):  1oDev∆ =  for both 
quantities. The population of the Dev-set in 2000 is 
larger (281) than that of the corresponding Dev-set in 
1998 (225). In other words, as we did in the previous 
section, we relate variation in the Dev-steps to annual 
modifications in a model rather than to differences in  

 
Year 2000 2001 

it , h   Latitude Longitude Latitude Longitude 

0      2 3 2 1 
12    2 2 2 1 
24 2 2 3 2 
36 2 2 1 2 
48 2 2 2 2 
60 2 3 2 3 
72 2 2 2 4 
84 2 2 3 2 
96 2 3 3 5 

108 2 6 3 6 
120 3 4 4 4 

TABLE 4. The size of Dev∆   for the ECMRWF model 



population sizes. 
Tables 2 and 4 show that annual modifications 

introduced in the model do not always have a positive 
effect on the prediction accuracy. There was definite 
improvement in the model performance in the year 
1999 in comparison with the performance of the 
model version of 1998. Modifications in the version of 
2000 caused the lost of prediction accuracy at the 
beginning of forecasts, but the performance of this 
model version is the most consistent at different 
forecast instants than the three other model versions 
considered in this study. The 2001 version does not 
demonstrate significant improvement in model 
performance. Notice also that performance of different 
model versions at 11 120t h=  does not practically 

change from year to year, as if there were no 
modifications at all.  

As we see, variation in the size of the Dev-step can 
be used to quantitatively evaluate the effect of model 
modification. Comparison of model versions of 
different years should preferably be performed using 
the observational database of one year to eliminate 
the influence of the different population sizes of the 
Dev-sets. Unfortunately, we did not have such an 
opportunity in this study. Developers of climate 
models can, however, use this technique in their study 
to eliminate costly model modifications with little or 
negative effect.  

Tables 3 and 5 illustrate the effect of annual 
modifications in the NOGAPS model. 

 
Year 2000 2001 

it , h    Latitude Longitude Latitude Longitude 

0       1 1 1 1 
12     1 2 2 1 
24 3 2 4 1 
36 11 2 2 1 
48 4 3 3 4 
60 2 2 2 4 
72 3 5 5 2 
84 3 5 6 2 
96 2 6 8 3 
108 4 9 9 4 
120 7 3 5 3 

TABLE 5. The size of Dev∆   for the NOGAPS model 

In summary, variations in Dev∆  demonstrate that 
model modifications do not always improve the 
predictions accuracy. They rarely decrease the 
accuracy though.  
 
4.3 Comparison of ECMRWF and NOGAPS models 
 

If one is interested in evaluation of the overall 
model performance in a given year, without 
distinguishing between forecast instants, Tables 2-5 
can be presented in a summarized form: 

 
 1998 1999 2000 2001 

ECMRWF 40 40 31 32 

NOGAPS 48 44 40 26 

TABLE 6. Sums of Dev∆   from 1 0t h=  to 11 120t h=    

for the latitude. 

 
 1998 1999 2000 2001 

ECMRWF 46 28 23 27 

NOGAPS 65 32 41 47 

TABLE 7. Sums of Dev∆   from 1 0t h=  to 11 120t h=    

for the longitude. 
 
Tables 6-7 serve two purposes. They can be used to 
evaluate the total effectiveness of annual model 
modifications or to compare the performance of 
different models. In the first case, these tables confirm 
the conclusion we have made in the previous section 
that the ECMRWF model of the year 2000 performs 
better than the other three versions for the model. As 
for the NOGAPS model, versions for the years 1999 
and 2001 are rather similar in accuracy. Versions of 
the years 1998 and 2000 produce less accurate 
results.  

If one compares the accuracy of the two models, it 
is clear from Tables 6-7 that the ECMRWF model 
consistently performs better than the NOGAPS model. 

Similar analysis can be conducted for two other 
characteristics of the m-function – the size of its core 
and the position of its maximum. However, we do not 
discuss these results here.  

 
 



5. UNCERTAINTY QUANTIFICATION IN 
HURRICANE PATH FORECASTS 

 
In this section, we explore the possibility of using 

m-functions to quantify, and possibly, improve the 
accuracy of hurricane path forecasts in situations 
where no observational data is available. The 
procedure we developed relies on the results of 
computations with climate models and Dev-
distributions constructed for these models using the 
observational database of previous hurricanes. In the 
procedure we do not choose between various climate 
models. Instead, we fuse the information they provide. 
The steps of the procedure are highlighted below. The 
detailed description of each step is given in the 
sections that follow.  

Step 1: Dev-distributions are constructed for all 
models included in the forecast of a given hurricane. 
The accuracy of each model is characterized by Dev-
distributions different for the latitude and the longitude, 
and the forecast instants. The observational database 
of previous hurricanes is used for that. Ideally, these 
would be the hurricanes of previous years. However, 
annual modifications in any model result in fact in a 
new model under the same name. Therefore, 
information on the model accuracy collected in the 
previous years cannot be used in the year of interest. 
As a result, the path of the first hurricane of a season 
cannot be predicted by using the procedure we 
describe in this paper. Also, the accuracy of 
predictions will increase with increasing the size of the 
observational database. In the future, we plan to 
conduct a more thorough study on the evolution of 
forecast accuracy depending on the size of the 
database. Notice that the problem of the size of the 
observational database is common for any approach 
requiring the training phase (Kumar et al., 2003). 
Difficulties could be overcome though if modelers 
would present the Dev-distributions constructed using 
the observational database of previous years along 
with a new model version. 

Step 2: Dev-distributions are transformed in the m-
functions.  

Step 3: The m-functions characterizing the 
accuracy of a climate model in predicting the latitude 
(longitude) at different forecast instants are combined 
with the prediction made using the model for a 
hurricane for which observational data are not 
available. The result for a model at each instant of the 
forecast is a grid centered on the model prediction of 
the hurricane position. For each grid interval in latitude 
and longitude directions, the BPA is prescribed. Its 
value reflects our belief that the latitude (longitude) of 
the real hurricane position falls exactly within that 
interval.  

Step 4: Then, the resultant predictions of several 
models are fused using Dempster’s rule (4) of 
evidence theory to create a new prediction. Fusion is 
performed independently for each coordinate and at 
each instant of the forecast. The final prediction is 
again a grid (different at different instants), where 
intervals in spatial directions are characterized by 
BPAs obtained from (4).  The BPA of an entire grid 
cell is the product of BPAs of the corresponding grid 
intervals in the latitude and longitude directions. The 
grid cell with the highest BPA is also the one with the 
highest degree of belief, and as such is the most likely 
candidate for hurricane’s position.  

Step 5: At each forecast instant, the grid cell with 
the highest degree of belief is extracted. Such cells 
form a hurricane path, which we call the swath of 
maximum degree of belief. The swath of maximum 
degree of belief is supposed to be more reliable than 
individual model forecasts, and ideally, coincides with 
observational data, if they are available.  

In this study, the data for hurricanes of the year 
2000 are used to evaluate the approach we 
developed to fuse forecasts produced by two models: 
the ECMRWF model and the NOGAPS model. The 
procedure is described for this case. Other models will 
be included in future studies. For convenience, we 
numerate hurricanes in accordance with the order of 
their occurrence during the year and a region (South, 
East, West). For instance, 4S stands for the fourth 
hurricane in the available database, which happened 
in the South region of the Pacific Ocean. 
Observational data for three hurricanes from the 



South Pacific region, three hurricanes from the East 
Pacific region, and six hurricanes from the West 
Pacific region are used solely for the evaluation of the 
quality of predictions obtained with the new technique. 
The data for other hurricanes of the year 2000 are 
used to quantify the model uncertainty at Step 1. 

 
5.1 Step 1  
 

The procedure starts from building Dev-
distributions characterizing the accuracy of each 
model in predicting hurricane paths. Since we use 
Dempster’s rule to fuse information from different 
sources (forecasts produced by different climate 
models), it is required that the degrees of belief be 
based on independent sources of evidence. 
Independence of evidence sources is important, but 
its definition is highly subjective (Shafer, 1976b).  As 
we are working with Dev-distributions, it stands to 
reason to assume that the Dev-distributions are 
independent of one another if they are constructed 
using the results of forecasts produced by different 
climate models and different observational data. In the 
current study, it means that the observational 
databases used to build Dev-distributions related to 
the NOGAPS model and the ECMRWF model should 
be different. We will explore in detail the possibility of 
relaxing this demand in the future. In this study, 
however, we simply divide the data for hurricanes of 
the year 2000 in two groups. Then, for each model, 
we obtain two independent sets of Dev-distributions, 
with one set corresponding to one part of the 
observational data and another set corresponding to 
the other part of the data. That is, for each quantity 
(latitude or longitude) at each forecast instant, we 
have two independent Dev-distributions for a given 
model. To simplify the discussion, we denote the set 
of Dev-distributions corresponding to the ECMRWF 
model and the part one of the observational data as 
E1; N1 denotes the set of Dev-distributions 
corresponding to the NOGAPS model and the same 
observational data. E2 and N2 denote the sets for the 
ECMRWF and NOGAPS models, respectively, 
obtained using another part of observational data. 

Section 3 provides the details on the construction of 
Dev-distributions.  

 
5.2 Step 2 

 
The m-functions are determined by Dev-

distributions. The number of Dev-values, which 
constitutes a Dev-distribution, depends on the 
forecast instant, the model, and the part of 
observational data it corresponds. For instance, at 

1 0t h= , the Dev-distributions for the latitude and 

longitude of the E1-set are based on 154 
observational data; those of the E2-set are based on 
127 data. Corresponding numbers for N1- and N2- 
sets are 280 and 261, respectively. Intuitively, the 
more observational data used, the more confidence 
we have in a Dev-distribution. This should be reflected 
in the degrees of belief we assign to subintervals of 
corresponding m-functions.  

For example, let us consider two Dev-distributions -
- 1Dev and 2Dev -- that are constructed based on 

observational datasets 1N  and 2N , respectively. 

Assume that 1 2N N> . Then, the BPAs for 

subintervals of the 1Dev -distribution calculated by 

expression (6) do not change. In other words, the total 
belief in the distribution built using the largest number 
of available experimental data does not change. For 
the 2Dev -distribution, the BPAs have to be 

recalculated though: 
 
            2 1( ) /i im Dev n N∆ = ,           (8) 

 
where i  is the index over subintervals with nonzero 
support of the 2Dev -distribution and 2i

i
n N=∑ . The 

sum of BPAs determined by Equation (8) is less than 
1: 

                            2

1
( ) 1i

i

Nm Dev
N

∆ = <∑ . 

 
To satisfy condition (1), we assign a BPA equal to 

1 2 1( ) /N N N−  not to any individual subinterval 

specifically, but to the set of all possible Dev-values 
and call it uncommitted belief. It reflects the fact that if 



we had additional 1 2N N−  experimental data, we 

would not know which Dev-subintervals they would 
support. 

In our case, we have four Dev-distributions based 
on different numbers of Dev-values at each forecast 
instant. For the Dev-distribution based on the largest 
number of Dev-values, we use expression (6) to 
calculate BPAs for its individual subintervals. 
Expression (8) is used to calculate BPAs for individual 
subintervals of the other three Dev-distributions. For 
instance, at 1 0t h=  the m-functions for both the 

latitude and the longitude corresponding to the Dev-
distributions of the N1-set are constructed using 
expression (6). The m-functions for the other three 
Dev-distributions are constructed using (8). A BPA 
equal to (280 154) 280 126/ 280− =  is assigned as the 

uncommitted belief to the Dev-distributions of the E1-
set. Uncommitted beliefs for the Dev-distributions of 
E2- and N2-sets are 153/ 280  and 19/ 280 , 
respectively. The BPAs committed to individual 
subintervals of all four Dev-distributions for the latitude 
at 1 0t h=  are shown in Fig. 3. Uncommitted belief is 

not shown in Figs. 3b-3d. 
Notice that since we consider different forecast 

instants as independent in this procedure, we do not 
introduce in the m-functions the uncertainty 
associated with different numbers of Dev-values 
available at different forecast instants. 

 
5.3 Step 3 
 
Expression (5) can be used for prediction in the 

following manner. If one knows the model data ( mL ) 
for the position of a given hurricane at a given instant 
and knows the deviation values corresponding to the 
latitude and the longitude at this instant, one can try to 
define the “true” hurricane position, that is, the 
position, which would coincide with the observational 
data if available. There is no guarantee, but it is our 
belief that the hurricane position found in such a way 
would better reflect reality. Thus, we rewrite 
expression (5) in the following way: 
 

                p mL Dev L= + ,            (9) 

 
              a) 
 

 
              b) 
 

 
             c) 
 

 
             d) 
 
FIGURE 3. The m-functions for the latitude at 1 0t h= . 



where  pL  is the predicted value of the latitude or the 
longitude. In reality, we do not know the exact Dev-
values. We do know, however, the Dev-distributions 
built in Step 1, which provide information about which 
Dev-subintervals have nonzero BPA at a given 
forecast instant. Corresponding BPAs of Dev-
distributions are determined is Step 2. So, instead of 
one value for a spatial coordinate, which would be 
given by expression (9), we have information on how 
different latitude/longitude intervals would be 
supported by evidence, which in this case is given by 

BPAs for Dev-subintervals. If mL  is the value of the 
latitude (longitude) calculated by a climate model for a 
given hurricane at a given forecast instant, and 
∆i Dev  are subintervals of the corresponding Dev-

distribution obtained by analyzing previous forecasts 
produced by this model, then we determine the 
supported latitude (longitude) intervals as 
                          p m

i iL L Dev∆ = + ∆ .             (10) 

 

The BPAs of Dev-subintervals are directly reassigned 
to corresponding latitude (longitude) intervals as 
 

             ( ) ( )p
i im L m Dev∆ = ∆ .         (11) 

 
As an example, Figure 4 shows BPAs for the 

individual latitude intervals at 1 0t h= . These BPAs 

correspond to the m-function obtained by combining 
the m-function shown in Fig. 3c (the ECMRWF model, 
E1 set) and the model prediction of the latitude value 

( 11.1m oL = ) for a hurricane for which we assume that 
no observational data is available.  

This procedure explains why the single maximum is 
a desirable property of a Dev-distribution. For a given 
hurricane at a given forecast moment, there could be 
only one value of the latitude (longitude), which 
characterizes the hurricane position. Correspondingly, 
there could be only one interval that includes this 
value. Thus, evidence should favor one interval over 
others to avoid contradiction.  

To summarize, the result from Step 3 for each 
model at each forecast instant is a grid centered on 
the model prediction of the hurricane position. For 
each grid interval in latitude and longitude directions, 
the BPA is prescribed. Since individual intervals of m-
functions do not intersect, the BPA of each interval 
coincides with the total belief assigned to the interval. 
Its value reflects our belief that the latitude (longitude) 
of the real hurricane position falls exactly within the 
interval. In fact, for each model at a given instant, 
there are two, not one, equally likely grids with 
assigned beliefs. The two grids correspond to two 
different sets of m-functions existing for the same 
model, e.g., sets E1 and E2 for the ECMRWF model. 

 
5.4 Step 4 
In this step, the resultant predictions of two models 

are fused using Dempster’s rule (4) of evidence theory 
to create a new prediction. Fusion is performed 
independently at each instant of the forecast for each 
coordinate. First, we fuse the m-functions of the 
ECMRWF model belonging to the E1 set with the m-
functions of the NOGAPS model belonging to the N2 
set.  We call the resultant prediction the E1N2 

 
+ 
 

11.1m oL =  
 

= 

 
 

FIGURE 4. Illustration to Step 3 



solution. By combining m-functions from different sets 
of different models we satisfy the requirement of 
Dempster’s rule for independence of evidence 
sources (for more detail see the discussion of Step 1). 
Another requirement of Dempster’s rule is that 
evidence from different sources should not strictly 
contradict each other. This requirement is implicitly 
satisfied in this problem: areas of possible values of 
the latitude (longitude) corresponding to different 
climate models overlap at any forecast instant. In 
problems where supported areas do not overlap, other 
fusing techniques should be considered instead of 
Dempster’s rule.  

Let us demonstrate how Dempster’s rule works in a 
simple case. Assume that at a given forecast instant, 
the m-function for the latitude of the ECMRWF model 
consists only of the single interval, 1EL∆ , with the 

BPA 1 1 1( )Em L s∆ =  and with the rest of belief assigned 

to the set of all possible latitude values 1 1( ) 1m s= −L  

(uncommitted belief). At the same instant, the m-
function of the NOGAPS model also consists of one 
interval 2NL∆  with the BPA 2 2 2( )Nm L s∆ =  and with 

the uncommitted belief 2 2( ) 1m s= −L . The result of 

fusing two basic probability assignment functions, 1m  

and 2m , can be presented as a table and is shown in 

Fig. 5.  

 
FIGURE 5. Example of Dempster’s rule application 

 
The entire table represents our total belief. Vertical 
strips are associated with BPAs of latitude intervals 
provided by the ECMRWF model and horizontal strips 
are associated with BPAs of latitude intervals provided 
by the NOGAPS model. The intersection of these two 
strips has measure, 1 2( ) ( )i jm L m L∆ ⋅ ∆ , where i and j 

are indices over intervals of functions 1m  and 2m , 

respectively. In our case, 1i j= = . The BPA of the 
intersection of two intervals is  
 

1 2 1 1 2 2( ) ( ) ( )E N E Nm L L m L m L∆ ∩ ∆ ≠ ∅ = ∆ ⋅ ∆ . 

 
If each function, 1m  and 2m , assigns nonzero BPAs 

for several intervals, then an interval of 1m  can 

intersect with more than one interval of 2m . In this 

case, the BPA of the interval is the sum of measures 
of all related intersections. As Fig. 5 demonstrates, 
the uncommitted belief 2( )m L  contributes to the BPA 

of the 1EL∆ -interval, and in a similar manner, the 

uncommitted belief 1( )m L  contributes to the BPA of 

the 2NL∆ -interval. The product of uncommitted 

beliefs does not relate to any specific interval. If two 
intervals do not intersect, the measure,  

 
      1 2 1 1 2 2( ) ( ) ( )E N E Nm L L m L m L∆ ∩ ∆ = ∅ = ∆ ⋅ ∆ , 

 
should be deduced from the total belief. Then, the 
BPAs for intersecting intervals should be renormalized 
accordingly. This is how expression (4) for Dempster’s 
rule is derived.   

No area in Fig. 5 should be deduced from the total 
belief. So, renormalization is not required. Therefore, 
the basic probability assignment function m, which 
corresponds to Fig. 5, is defined as   

 

1 2 1 2

1 2 1
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1 2
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      (12) 

 
The corresponding Bel-function can be obtained 

from expression (2); plausibility functions are not used 
in the current study.  

It is easy to see that fusing even the simplest m-
functions (defined over a single interval) results in a 
complex m-function defined over several intervals of 
different size. Keeping in mind that i) m-functions, as 
those built in Steps 2-3, include several intervals and 



ii) intervals of two m-functions intersect in different 
ways at different forecast instants, we decided to 
coarsen the set of intervals after fusing in order to 
avoid unnecessary complexity. The coarsening means 
that we calculate BPAs only for the set of intervals 
associated with one of the m-functions used in fusing. 
This set has a minimum deviation step Dev∆ . If the 
deviation steps of two m-functions are of the same 
size, we choose the set of intervals with the highest 
degree of belief. BPAs for the chosen set are obtained 
by Dempster’s rule (expression (4)).  As the intervals 
of this set are disjoint, the total belief that the “true” 
velocity value is contained in an interval is equal to the 
BPA of that interval. 

The final prediction is again a grid (different at 
different instants), where intervals in spatial directions 
are characterized by the BPAs.  BPA of an entire grid 
cell is the product of BPAs of the corresponding grid 
intervals in the latitude and longitude directions: 

 

1 2( ) ( ) ( )i j i jm Lat Lon m Lat m Lon∆ × ∆ = ∆ × ∆  

 
(i, j are indices over intervals of functions 1m  and 2m   

corresponding to the latitude (Lat) and the longitude 
(Lon), respectively). The grid cell with the highest BPA 
is also the one with the highest degree of belief, and 
as such is the most likely candidate for the hurricane 
position.   

To illustrate the procedure, let us combine two m-
functions for the latitude belonging to E1 and N2 sets 
(Figs. 3b,c) and corresponding m-functions for the 
longitude (not shown here) with the predictions made 
with NOGAPS and ECMRWF models at 1 0t h=  for 

the position of the same hurricane: 
 

 Latitude Longitude 

ECMRWF 11.1 134.5 

NOGAPS 12.5 132.3 
 

TABLE 6. Models predictions of the hurricane position at 1 0t h=  

 
The m-function resulting from fusing two m-functions 
for the latitude obtained in Step 3 is shown in Fig. 6a; 
the resultant m-function for the longitude is given in 

Fig. 6b. Figure 7a shows the distribution of belief over 
all grid cells in this case. Different colors correspond 
to different degrees of belief. There is no belief that 
the hurricane position would be outside the colored 
area.  

In a similar manner, we fuse the m-functions of the 
ECMRWF model belonging to the E2 set with the m-
functions of the NOGAPS model belonging to the N1 
set and call the resultant prediction the E2N1solution.  
The E2N1 solution corresponding to the E1N2 
solutions shown in Fig. 7a, is given in Fig. 7b. 

Two solutions – E1N2 and E2N1 – are equally 
likely. Therefore, we average these two solutions to 
produce a single forecast. In this step, two solutions 
R1 and R2 are averaged. The intervals of the two 
solutions are combined individually for each 
coordinate and independently at each forecast instant. 
In order to resolve the mismatches in size and 

 
       a) 
 

 
         b) 
 
FIGURE 6. The m-functions for the latitude (a) and 
the longitude (b), which result from the application  
of Dempster’s rule to m-functions shown in Figs. 3b, 
3c and corresponding m-functions for the longitude 
combined with the model data of Table 6. 



location of the intervals of the two solutions, we 
choose the most refined interval set (with a minimum 

L∆ ) to increase the accuracy of predictions. Then, 
the other solution is projected onto the chosen set. 
The procedure is described below in detail.  

Let us assume that at a given instant the grid of the 
E1N2 solution in the latitude direction is more refined 
than the grid of the E2N1 solution in the same 
direction. Therefore, we will project the solution E2N1 
for the latitude onto the latitude intervals of the 
solution E1N2.  At a given forecast instant, 11m  is the 

BPA of the latitude interval 11 12[ , ]L L of the solution 

E1N2; 21m  is the BPA of the latitude interval 

21 22[ , ]L L  and 22m  is the BPA of the velocity interval 

22 23[ , ]L L  of the solution R2. The interval 11 12[ , ]L L  

intersects both intervals of the solution R2 as shown 
in Fig. 8.   

 

                     FIGURE 8. Intersecting intervals of two solutions 
 

Then, the BPA of the interval 11 12[ , ]L L  for the 

averaged solution is calculated by the formula                        

22 11 12 22
11 21 22

22 21 23 22

1
2

m m m m
m m m m

m m m m

⎛ ⎞− −
⎜ ⎟= + +
⎜ ⎟− −⎝ ⎠

, 

 
which takes into account 21m  and 22m  with 

appropriate weights. Weights are determined by the 
fraction of an interval that overlaps with 11 12[ , ]L L . For 

other types of interval overlapping, a similar approach 
for calculating the averaged interval BPA should be 
applied.  Figure 9 shows the result of averaging E1N2 
and E2N1 solutions from Fig. 7.   

The averaging technique used in this paper is one 
of the simplest and is well suited to the present study.  
 
5.5 Step 5   
 

Figure 9 gives an example of the prediction 
resultant from Steps 1-4 at a single forecast instant. 
The complete forecast of a hurricane consists of 
predictions at several instants. The number of instants 
is determined in our procedure by the number of 
instants at which the data of all models included in the 
forecast are available. An example of the complete 

 
            a) 
 

 
             b) 
 
FIGURE 7. Solutions E1N2 (a) and E2N1 (b) 
corresponding  to m-functions shown in Fig. 3 and 
the model data of Table 6 
 

 
 

FIGURE 9. Averaged solution corresponding to 
E1N2 and E2N1 solutions shown in Fig. 7. 



forecast is given in Fig. 10. In this forecast, the 
prediction at 1 0t h=  coincides with the one shown in 

Fig. 9. Different colors reflect different degrees of 
belief. For better visualization, areas with low or zero 
degrees of belief are cut. This is a forecast for the 1W 
hurricane started on May 6, 2000 at 12.00 p.m. in the 
West region of the Pacific Ocean. 

To serve better practical purposes, a forecast can 
be reduced to a single grid cell with the highest 
degree of belief at each forecast instant.  

Such cells form a hurricane path, which we call the 
path of maximum degree of belief. The path of 
maximum degree of belief is the most probable 
candidate to include the “true” hurricane path.  

The path shown in Fig. 11 is extracted from the 
complete forecast of the hurricane 1W given in Fig. 

10. In the figure, the path is compared with the 
predictions made with each climate model individually 
(white circles correspond to the ECMRWF model 
prediction and grey circles correspond to the 
NOGAPS model prediction). We also compare the 
path with the ensemble averaged data (grey squares) 
(the ensemble consists of the two models). The 
observational data (black circles) are shown in the 
figure to assess the quality of the prediction.  

One can see that the NOGAPS model prediction in 
this case is far from observational data, whereas the 
ECMRWF model is in good agreement with 
observations. Our approach combines the results of 
both models, and yet, our prediction includes 
observational data in the path of maximum degree of 
belief at all forecast instants up to 120h, except 

10 108t h= . These results show a good potential of the 

approach to correctly “weight” contributions from 
different sources. Comparison with the ensemble 
averaged data also favors our approach. Also, in 
contrast to the predictions made by individual models 
or by their average, our approach produces not just a 
single line, the accuracy of which cannot be estimated 
in the absence of observational data, but zones with 
well-defined degrees of belief. This is an obvious 
advantage of the present method. 

Notice that the size of the grid cell with the 
maximum degree of belief increases with the forecast 
duration, and the degree of belief assigned to the cell 
diminishes. This is the consequence of the drop in 
models accuracy as we discussed above in Section 4. 

In the following section we provide additional 
examples of the application of the approach we 
described above. 

 
6. EXAMPLES OF PREDICTIONS 
 

Figures below show forecasts for four different 
hurricanes occurred in the year 2000 in the different 
regions of the Pacific Ocean. Denotations are the 
same as in Fig. 11.  The observational paths of these 
hurricanes are complex and it makes them difficult to 
predict. Yet, our approach catches hurricanes trends 
well. Its performance is better and more consistent 

FIGURE 10. Complete forecast for the hurricane 1W 

 
 

FIGURE 11. The path of maximum degree of belief 
for the hurricane 1W 



FIGURE 15. Hurricane 31W (start time: 10/31, 12.00 p.m.) 

than the performance of individual models and their 
average.   

 

 
FIGURE 12. Hurricane 4S (start time:  01/06, 12.00 p.m.) 
 
 

 
FIGURE 13. Hurricane  3E (start time: 06/21, 12.00 p.m.) 

 

 
FIGURE 14. Hurricane 24W (start time: 09/07, 12.00 p.m.) 

 
 
 

7. CONCLUSIONS 
 

In this paper, we describe a new technique to 
quantify the accuracy of climate models in predicting 
the hurricane path using the available database. The 
technique proves to be effective for studying the 
evolution of the model accuracy with a forecast 
duration and the effectiveness of annual model 
modifications, and for comparing the performance of 
different models. Results of testing the technique 
using two climate models: the ECMRWF model and 
the NOGAPS model and observational database for 
hurricanes of the years 1998-2001 in the Pacific 
Ocean are shown.   

We also suggest an approach to quantify and 
improve the accuracy of hurricane path forecasts in 
situations where no observational data is available. 
The approach relies on the mathematical tools of 
evidence theory, which are customized here for 
application to total uncertainty in simulations.  

Application of this approach to the hurricane 
forecasts of the year 2000 has provided encouraging 
results.  In the future, we plan to further improve the 
accuracy of predictions produced by the approach. 
One of the possibilities is to increase the number of 
climate models included in the forecast. The other 
possibility is to apply to the solution obtained at Step 
5, the smoothing procedure described in Poroseva et 
al. (2005) prior extracting the path of maximum 
degree of belief.  
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