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1. INTRODUCTION 

1Optimal use of an atmospheric forecast 
typically requires some information on its 
sharpness and reliability. Outputs from an 
ensemble prediction system (EPS) can be used to 
estimate both characteristics (Sivillo et al., 1997), 
but on the other hand do not prove to be very 
useful probabilistic forecasts, in part because the 
number of ensemble members is typically fairly 
small, but mainly because the forecasts are not 
perfectly reliable: they can be biased and typically 
do not display enough variability, thus leading to an 
underestimation of the uncertainty (Buizza et al., 
2005). 

Different approaches have been proposed 
recently to build reliable probabilistic forecasts 
from such ensembles, including Bayesian model 
averaging (Raftery et al., 2005), the Bayesian 
processor of output (Krzysztofowicz, 2004) and the 
best member method (Roulston and Smith, 2003), 
which is by far the simplest to implement. While we 
agree with Krzysztofowicz (2004) that Bayesian 
theory provides the appropriate theoretical 
framework for obtaining the probability distribution 
of a predictand, conditional on an ensemble of 
model outputs, we do feel that there is at the 
moment a need for simpler methods which can be 
readily implemented. 

The best member method proposed by 
Roulston and Smith (2003) relies on a simple 
resampling scheme: individual members of an 
ensemble are "dressed" with an error distribution 
derived from a database of past errors made by 
the "best" member of the ensemble, where the 
best member of an ensemble forecast is defined 
as the ensemble member which described best 
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the observed state of the atmosphere for this 
forecast, with respect to a given norm. 

Wang and Bishop (2005) have however shown 
by stochastic simulations that the best member 
method can lead both to underdispersive and 
overdispersive ensembles. They proposed an 
improved method where the error distribution is 
scaled so as to obtain ensembles which display 
the desired variance. This approach however fails 
in cases where the undressed ensemble members 
are already overdispersive. 

We propose to overcome this difficulty by 
dressing and weighing each member differently. 
This method leads to forecasts which not only 
have the right amount of variance both for 
underdispersive and overdispersive EPS, but 
which also have better tail behaviour. In this 
extended abstract, we only present a summary of 
the methodology and of the results. A more in-
depth analysis of this idea can be found in Fortin 
and Favre (2005). 

2. EPS WITH EXCHANGEABLE MEMBERS 

A numerical weather prediction system 
provides forecasts using some information on the 
state of the atmosphere and a dynamical model of 
the atmosphere. To assess the impact of 
uncertainty on the analysis and on the dynamical 
model structure, it is possible to run different 
versions of a model (or different models 
altogether) with slightly different initial conditions, 
and thus obtain an ensemble of forecasts. We 
refer to such a system as an ensemble prediction 
system, or EPS. 

In some cases, members of an EPS are 
(finitely) exchangeable, meaning essentially that 
there is no possibility that one can tell from the 
forecasts which version of the model was used to 
obtain a given forecast, and which method was 
used to perturbate the initial conditions. In other 
words, the forecasts can be reordered and 
renumbered without loosing any information on the 
predictand. For a formal definition of 
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exchangeability the reader may refer to the 
monograph by Bernardo and Smith (1994). 

In many cases, even if the members of an EPS 
are not strictly exchangeable, they can be 
considered exchangeable in practice. For 
example, if a control run using unperturbed initial 
condition is included in the ensemble, it might be 
possible to distinguish it from the other members 
of the ensemble for the first few days of the 
forecast, so the members would not be 
exchangeable for short lead times, but as the lead 
time increases this typically becomes almost 
impossible, making the forecasts exchangeable in 
practice. 

In the remaining of this paper, we will restrict 
ourselves to EPS for which the members can be 
considered exchangeable. 

3. UNIVARIATE FORECASTING 

In this paper, we focus on the problem of 
univariate forecasting from an EPS. Clearly, in 
most cases the predictand is multidimensional. In 
many cases however, this is because the variable 
of interest is really a combination of different 
meteorological elements at different spatial 
locations and lead times. This is the case for 
example for hydrological forecasting, where the 
inputs are certainly multidimensional, but the 
output is very often unidimensional. The proposed 
methodology would also be applicable in these 
circumstances. An extension of the methodology 
to multivariate forecasting is discussed in the last 
section of the paper. 

4. PROBABILISTIC FORECASTING 

Let yt be the observation of interest at time t. 
For simplicity, we assume that {yt} is a realization 
of a stationary stochastic process and that 
forecasts are issued for a single lead time, so that 
they can be indexed simply by the time for which 
they are valid. Let xt,k be a forecast of yt provided 
by the kth member of an EPS and xt={xt,k} denote 
the ensemble of all forecasts of yt.  

From the EPS outputs xt, we would like to be 
able to obtain a probabilistic forecast p(yt|xt) of yt, 
or at least to be able to simulate from this 
predictive distribution. 

5. THE BEST MEMBER METHOD 

Roulston and Smith (2003) have recently 
introduced the “best member” method to obtain 
scenarios which appear to be sampled from the 
predictive distribution p(yt|xt). The idea is to “dress” 

each ensemble member xt,k with a probability 
distribution representing the error made by this 
member when it happens to be the best member 
of the ensemble. Amongst the ensemble members 
xt,k, define the best member xt* as the one which 
minimizes ktt xy ,− . 

From a database of past forecasts, build a 
probability distribution from realizations of εt*=yt-xt*. 
Finally, define a probabilistic forecast which 
consists of a finite mixture of error distributions 
centered on each original member of the 
ensemble: 
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Simulating from this distribution is simple: to 
obtain M=N⋅K simulations, dress each of the K 
members of the ensemble by sampling N error 
patterns {εt,k,n, n=1,2,...,N} from a database of past 
forecast, and add each error pattern to this 
ensemble member: 

ŷ t,k,n = xt,k + εt,k,n (2) 

We refer to the initial ensemble xt={xt,k} as a 
dynamical ensemble, and to the augmented 
ensemble tŷ ={ ŷ t,k,n} as a statistical ensemble. 

Wang and Bishop (2005) have shown that the 
best member method does not lead to reliable 
forecasts. A system is said to be reliable if we 
cannot tell apart a large set of observed values 
from a large set of forecasts. 

6. RESCALING THE ERROR PATTERNS 

Wang and Bishop (2005) suggest that the error 
patterns be rescaled by a constant factor ω so that 
the variance of the statistical ensemble be the 
same as the variance of the observations. 

ŷ t,k,n = xt,k + ω ⋅ εt,k,n (3) 

This technique is only applicable when the 
dynamical ensemble is underdispersive. Indeed, 
as we still add uncorrelated noise to the dynamical 
ensemble, we can only increase the variance. In 
the conclusion of their paper, Wang and Bishop 
(2005) mention that a possible solution would be to 
weigh each ensemble member differently. We 
think that ensemble members should not only be 
weighed, but also be dressed differently. 
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7. IMPROVING UPON THE BEST MEMBER 
METHOD BY DRESSING AND WEIGHING 
EACH MEMBER DIFFERENTLY 

In the best member method, each ensemble 
member is dressed using the same error 
distribution. This seems to make sense if all 
ensemble members are exchangeable prior to 
their observation, as there is no a priori reason for 
assuming that any ensemble member has any 
more chance of being the best member of the 
ensemble, or that its error distribution should be 
any different from that of the other members if it 
indeed happens to be the best member. This 
intuition is simply wrong. 

7.1 Why weigh or dress differently 
exchangeable members of an EPS? 

Let )|Pr( *
, ttktk xx x==π , i.e. the posterior 

probability that member k be the best member of 
the ensemble for time t. From the law of total 
probability, we have: 

∑
=

=⋅=
K
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Hence, the best member method would be 
exact, i.e. )|(ˆ ttyp x  would be equal to )|( ttyp x  if 

Kk /1=π  and ),|( *
, ttktt xxyp x= = )( ,* ktt xyp −ε  for 

k=1,...,K. 
Exchangeable members of an EPS, being 

indistinguishable, have the same prior probability 
of being the best member of the ensemble, i.e. 
Pr(xt,k=xt*)=1/K. But this does not mean that the 
posterior probabilities )|Pr( *

, ttkt xx x=  should be 

equal. Consider for example an EPS which 
produces underdispersive dynamical ensembles. 
Because they are underdispersive, the outcome 
will often lie outside the spread of the ensemble. 
Hence, the extrema of the ensemble will have 
much more chance of being the best member of 
the ensemble than a member which is close to the 
ensemble mean. Conversely, if the EPS is highly 
overdispersive, members close to the ensemble 
mean will have more chance of being the best 
members of the ensemble than the extrema of the 
ensemble. 

The distribution ),|( *
, ttktt xxyp x=  also 

depends on k. Let xt,(k) be the kth smallest forecast 
of the ensemble (or kth order statistic) and let 
mt,(k)=(xt,(k-1)+xt,(k))/2 be the mid-point between xt,(k-1) 

and xt,(k). The event xt,(k)=xt* occurs if and only if yt 

belongs to the closed interval [mt,(k),mt,(k+1)] for 
k=2,...,K-1. For k=1, xt,(k)=xt* occurs if yt belongs to 
the half-opened interval (-∞,mt,(2)], and for k=K, 
xt,(k)=xt* occurs if yt belongs to the half-opened 
interval [mt,(K),+∞). Hence, the support of 

),|( *
, ttktt xxyp x=  is a bounded interval for all 

members except for the smallest and largest, for 
which it is semi-infinite. It is therefore impossible to 
find a distribution pε* such that 

),|( *
, ttktt xxyp x= = )( ,* ktt xyp −ε  for all k, since the 

support of pε* does not depend on k. 
The above examples show that the probability 

that an ensemble member be the best member of 
the ensemble as well as the error distribution of 
the best member of the ensemble both depend on 
the location of the ensemble member within the 
ensemble. 

7.2 Dressing and weighing each order 
statistic of the dynamical ensemble 
differently 

Given the obvious dependence on the rank of a 
member in an ensemble of the probability that it be 
the best member and of its error distribution if it is 
the best member, we propose to dress each order 
statistic of the dynamical ensemble differently, and 
to give them different weights when constructing a 
statistical ensemble. 

Define { }Ttxxxy tktttk ,...,2,1*,|** )(,)( ==−=  

to be the best member errors observed in the 
database of past forecasts when the best member 
was the kth order statistic. Define also π(k) to be the 
probability that the best member be xt,(k), i.e. 

)|Pr( *
)(,)( ttktk xxx ==π . 

When dressing the kth member in the ordered 
ensemble, we propose that instead of resampling 
from the archive of all best member errors, we 
instead resample from εεεε(k)* to obtain dressed 
ensemble members. 

The number of dressed members generated 
from the kth order statistic should reflect the 
probability that this particular member be the best 
member of the ensemble. If we want to obtain M 
ensemble members from the original K members, 
then a possibility is to draw Nk=π(k)⋅M dressed 
ensemble members from xt,(k). However, as we are 
still not really drawing the statistical members from 
the conditional distribution p(yt|xt), we would have 
little chance to get statistical members which have 
exactly the right amount of variance. 

An alternative is to optimize the number of 
dressed ensemble members drawn from each 
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dynamical member so as to get the correct 
variance. Of course, many combinations of 
weights can lead to the same variance, so we have 
to constrain the problem. A solution is to choose a 
parametric function for wk having a single 
parameter, which can be tuned to ensure that the 
forecasts have the same variance as the 
observations, for example a symmetric beta 
probability distribution function: 

duuuw
Kk

Kk
k ∫ −

−− −⋅∝
)1(

11 )1( αα  (5) 

8. EVALUATING THE RELIABILITY OF THE 
BEST MEMBER METHOD USING A 
SYNTHETIC EPS SYSTEM 

To assess the reliability of the best member 
method, we shall re-use in this paper the simple 
synthetic EPS setup proposed by Wang and 
Bishop (2005). 

8.1 A synthetic EPS system 

Assume that observations {yt, t=1,2,...,T} are 
independent, normally distributed random 
variables with zero mean but time-dependent 
variance σt². Assume also that σt² is drawn from a 
Chi-square distribution with 3 degrees of freedom. 
An EPS provides a K-member forecast 
xt={xt,k, k=1,2,...,K} for each observation yt. All 
ensemble members are independent, identically 
distributed (i.i.d.) normal variates having zero 
mean and time-dependent variance ξ2

t, where ξ2
t 

is related to σt² by a random relationship: ξ2
t=at⋅σt², 

at being a uniform random variable on the interval 
[µa-0.5,µa+0.5], where µa is the expectation of at. 

This EPS has spread-skill: when the 
observation yt is less variable thus more 
predictable, i.e. σt² happens to be small, the 
variance of the ensemble members ξ2

t will tend to 
be smaller, and conversely. The EPS will be 
underdispersive if µa<1 and overdispersive if µa>1. 

To evaluate the best member method using the 
synthetic EPS system proposed by Wang and 
Bishop (2005), we varied K from 3 to 20 and tested 
values of 0.3 and 1.7 for µa, corresponding 
respectively to an underdispersive and an 
overdispersive EPS. 

As proposed by Wang and Bishop (2005), we 
built each time a database of past forecasts by 
generating 15 000 observations yt and 
corresponding ensemble forecasts xt. The different 
methods have then been compared using statistics 
computed on a second set of 15 000 ensemble 

forecasts xt. To obtain accurate statistics, N=150 
statistical ensemble members have been drawn 
from each ensemble member xt,k. 

8.2 A focus on variance and kurtosis 

It is clear from the experimental setup that the 
mean and skewness of both the observations and 
the forecasts will be zero, so we know before hand 
that the first and third moments of the forecasts 
will be reliable. We will therefore focus on the 
second and fourth moments, i.e. the variance and 
the kurtosis. While the variance measures the 
amount of dispersion of a distribution, the kurtosis, 
denoted by β2 and defined by the ratio of the fourth 
central moment to the square of the variance, 
measures the degree of peakedness of a 
distribution. Distributions with high kurtosis values 
(above 3), are said to have heavy tails, because 
the probability mass located in the tails, far from 
the mean, is relatively high. We have shown by 
numerical integration that the kurtosis of the 
observations {yt} is very close to five, so that the 
distribution of the observations has quite heavy 
tails. If the kurtosis of the ensemble forecasts is 
not close to five, the probability of extreme events 
will not be correctly estimated on average. We will 
see that the method of Wang and Bishop (2005), 
while making the forecasts second-order reliable, 
leads to forecasts which have a kurtosis much 
larger than five, thus leading to an overestimation 
of the probability of extreme events. 

8.3 Results 

Figure 1(a) shows the ratio of the variance of 
the statistical ensemble members to the variance 
of the observations as a function of K, the 
dynamical ensemble size, for µa=0.3. Figure 1(b) 
shows the difference between the kurtosis of the 
ensemble members and the kurtosis of the 
observations as a function of K, also for µa=0.3. 
Figure 2(a) and 2(b) provide the same information, 
but for µa=1.7. The thick line on the graphs shows 
the ideal value, i.e. one for the variance ratio and 
zero for the kurtosis difference. 

For an underdispersive EPS, it is clear from 
Figure 1(a) that both the method of Wang and 
Bishop (2005) and our method successfully adjust 
the variance of the ensemble forecasts so as to 
make them second-order reliable, but as Figure 
1(b) shows, this leads to a very important increase 
in the kurtosis of the ensemble forecasts for the 
method of Wang and Bishop (2005). On the 
contrary, our method leads to a slight 
underestimation of the kurtosis, but still improves 
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upon the original method of Roulston and Smith 
(2003). For an overdispersive EPS, Figure 2 
shows that our method leads to second-order 
reliable forecasts, with a kurtosis still close to the 
kurtosis of the observations. Notice the change in 
scale between Figure 1(b) and Figure 2(b), 
meaning that the increase in kurtosis for the 
method of Wang and Bishop (2005) is much more 

important than for the method proposed in this 
paper. Note also that Figure 2 shows no results for 
the method of Wang and Bishop (2005), as this 
method is not applicable when the dynamical 
ensemble is already overdispersive, i.e. when 
µa>1. 
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Figure 1: For µµµµa=0.3, (a) Ratio of the variance of 
the statistical ensemble members to the 
variance of the observations and (b) difference 
between the kurtosis of the statistical 
ensemble members and the kurtosis of the 
observations 
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Figure 2: For µµµµa=1.7, (a) Ratio of the variance of 
the statistical ensemble members to the 
variance of the observations and (b) difference 
between the kurtosis of the statistical 
ensemble members and the kurtosis of the 
observations



 

9. DISCUSSION AND CONCLUSION 

Ensemble prediction systems (EPS) can be 
very useful to estimate the uncertainty of a 
deterministic numerical weather prediction. 
However, the number of members in an EPS is 
limited by computing resources and EPS outputs 
typically do not provide reliable probabilistic 
forecasts. We have shown in this paper that while 
the best member method of Roulston and Smith 
(2003), as modified by Wang and Bishop (2005), 
can lead to second-order reliable forecasts for an 
underdispersive EPS, it can also lead to 
probabilistic forecasts having very heavy tails, and 
which therefore will overestimate the probability of 
extreme events. 

We have proposed and tested on a synthetic 
EPS a new method for dressing ensemble 
members which is based on the idea of dressing 
and weighing each ensemble member differently. 
This new method has the advantage of working 
both for underdispersive and overdispersive 
ensembles, and leads to forecasts that are more 
reliable, in the sense that they have enough 
variance, but also tail probabilities which are closer 
to those of the observations, especially for highly 
underdispersive ensembles.  

As presented in this paper, the proposed 
method is only applicable to the problem of 
univariate forecasting, because the weight and 
error distribution of each ensemble member 
depends on its rank in the sample, but also 
because the best member of the ensemble is 
identified by the absolute difference between the 
observation and the forecast. If one wants to 
generalize the approach to multivariate 
forecasting, one possibility is simply to choose a 
norm in a multidimensional space which can be 
used both to identify the best member in the 
ensemble and to rank the ensemble members by 
their distance to the ensemble mean. 

The major limitation of the method as proposed 
is the fact that it requires a database of historical 
forecasts from the best member of the ensemble 
in which each order statistic of the dynamical 
ensemble is well represented. When the size of 
the dynamical ensemble is large compared to the 
size of the historical database (which is often in 
practice quite small), it becomes difficult to 
estimate accurately the error distribution for each 
order statistic, as well as the weight that should be 
assigned to each order statistic. 

Another difficulty, which is shared by both the 
original best member method of Roulston and 
Smith (2003) and the improved method of Wang 

and Bishop (2005), is the fact that the observed 
process and the ensemble must be stationary or 
deseasonalized prior to its analysis. 

In the coming months, we plan to test the 
proposed method with outputs from the Canadian 
ensemble prediction system, with application to 
streamflow forecasting. 
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