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1. INTRODUCTION 
 
Conventional statistical methods are based on strong 
assumptions that often are not met in reality.  It will be 
demonstrated that when common assumptions are 
violated, inference based on conventional methods may 
be misleading, while employing resampling methods 
makes it possible to obtain reliable inference. 
 Consider time series  of the vertical velocity of 

wind recorded under Project LESS (Lake-Effect Snow 
Studies) in the winter of 1983-84 (Agee and Gilbert 
1989).  Figure 1 shows a segment of 4096 values 
(corresponding to a horizontal length of 15 km) taken 
from the record at 50 m above Lake Michigan for 

 flight speed and 20 Hz sampling rate.  
Subjected to the test for stationarity (Gluhovsky and 
Agee 1994) these data can be considered stationary.  
The sample mean, variance, and skewness computed 
from the record in Figure 1 are, respectively, 0.035, 
1.111, and 0.838.   
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 One may conclude how much importance is 
reasonable to attach to such estimates by computing 
confidence intervals (CIs).  In practice, this is commonly 
done assuming that the process under study is linear 
and that observations follow a normal distribution.  
Large sample skewness in the example above 
indicates, however, that  may not be normal. tW
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Fig.1. Record of 20-Hz aircraft vertical velocity 
measurements under Project LESS. 
 

____________________________________________ 
 

* Corresponding author address:  Alexander Gluhovsky, 
Purdue University, Dept. of Earth & Atmos. Sciences, 
West Lafayette, IN 47907;  e-mail: aglu@purdue.edu 

 
In this study, we first examine, by Monte Carlo 
simulations with models possessing statistical properties 
shared by real processes, how common practices in 
meteorological and climatological data analysis are 
affected by questionable assumptions.  After that we 
return to a real situation with unknown data generating 
mechanism and one available record and show how 
resampling methods (e.g., Politis et al. 1999, Lahiri 
2003) come to rescue. 
 
 
 
2. MONTE CARLO SIMULATIONS WITH SIMPLE 

MODELS 
 
 To get an idea of how much in error we can 
possibly be when applying conventional techniques, 
assume that we know the model generating the time 
series at hand.  Although such assumption is unrealistic, 
it may indicate what can be expected in situations of 
practical interest, permitting to determine the coverage 
probability of a CI (probability that the interval contains 
the parameter being estimated).   
 In practice, an ARMA model is fitted to the available 
record, then CIs for parameters of interest are computed 
from the estimated model.  For a “reality check” of this 
procedure, in this study the simplest linear model was 
fitted to one “available” realization of a known model, 
then the Monte Carlo simulations were conducted by 
generating 1000 realizations of the known model and 
computing, for each realization, the 90% CI for its mean 
or variance from the estimated linear model.  Finally, the 
coverage probability of the CI was determined by 
counting the proportion of times the parameter (known 
in this experiment) happened to be inside the CI.   
 
 
 
2.1 Simulations with a Linear Model 
 
Suppose the data are generated by a first order 
autoregressive process:  
 
 1 ,t tX X tφ ε−= +  (1) 
 
where 0 1φ< <  is a constant and tε  is white noise – a 

sequence of uncorrelated random variables with zero 



mean and variance 2
εσ .  Then, 90% CIs for the mean 

and variance of tX  are given by  
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respectively, where sample mean x  and sample 
variance 2ˆXσ  are computed from data, 2 2 2/(1 )X εσ σ φ= −  
is the variance of tX  (e.g., Priestly 1981, Brockwell and 

Davis 1991).  Since 2
Xσ  and is usually unknown, it must 

be estimated from data (as well as the model).   
 

 In our simulations, realizations of length  
were generated from model (1) with 

1024n =
0.67φ =  and 

Gaussian white noise with zero mean and variance 
 (which makes ).  A linear 

model was fitted to one “available” such realization, 
resulting in model (1) with 

2 21 0.5εσ φ= − ≈ 5 2 1Xσ =

0.66φ ≈ , , 
confirmed by commonly employed diagnostic checking 
procedures.   

2 0.55εσ ≈

 It came as no surprise that, resulting from the 
Monte Carlo simulations, the coverage probability of CIs 
(2) was around 0.90.  After that, a “real life” situation of 
a nonlinear time series was explored. 
 
 
 
2.2 Simulations with a Nonlinear Model 
 
The data are generated from a nonlinear model, 
 
 , (3) 2( 1t t tY X a X= + − )
 
where tX  is the same as before and a  is a constant 
( corresponds to model (1)).   0a =
 

 Pretending that the model is unknown we again, 
following a common practice, estimated the model from 
data using conventional methods of time series 
analysis.  Namely, two realizations of model (3) of 
length , one with  and the other with 

, were generated and appropriate ARMA 
models were fitted to the two observed time series data 
sets.  Both models, estimated as first order 
autoregressive (Eq. (1) with  and 

, respectively), passed commonly 
used residual-based postfitting diagnostic checking.   

1024n = 0.20a =
0.35a =

2.65, .54εφ σ≈ ≈
20.62, 0.62εφ σ≈ ≈

 

 Figure 2 indicates that nonlinearity at the chosen 
values of coefficient a do not considerably affect the 
dependence structure of the observations. 
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Fig. 2. Sample correlation functions of tX  (solid),  

tY  ( , dashed), and  ( , dash-dotted). 0.20a = tY 0.35a =
 
 
 Monte Carlo simulations that were carried out to 
determine the coverage probabilities of 90% CIs for the 
variance (computed from (2b)) for each of the two 
estimated models.  The results of the simulations are 
presented in Table 1 together with those obtained in 
Subsection 2.1 for 0a =  in Eq. (3).   
 The coverage probabilities on the first line of Table 
1 decrease with a increasing.  Thus for nonlinear time 
series, the actual coverage probability can be a great 
deal less than the target coverage (0.90), so that the CI 
becomes too short (and for  practically useless 
since there is a considerable probability that it does not 
contain the variance).   

0.35a =

 The widths of the “theoretical” 90% CIs (2b), listed 
on the second line of Table 1, do not grow with a, unlike 
the widths of the corresponding CIs that do provide the 
desired 0.90 coverage.  These are placed on the third 
line of the table and are 1.5 ( ) and 2.3 
( ) times wider than the “theoretical” ones. 

0.20a =
0.35a =

 
 
 Table 1. Coverage probabilities of 90% CIs (2b)  
 for the variance of  tY
 __________________________________ 
 
 a 0.00 0.20 0.35 
 __________________________________ 
 
 Coverage of CI (2b) 0.90 0.70 0.51 
 
 Width of CI (2b) 0.23 0.22 0.22 
 
 Width of real 90% CI 0.23 0.34 0.51 
 __________________________________ 
 



3. SUBSAMPLING CONFIDENCE INTERVALS 
 
As an alternative, consider subsampling (e.g., Politis et 
al. 1999), a computer-intensive methodology for 
constructing confidence intervals from one realization of 
a time series without relying on questionable 
assumptions.  The technique is based on the values of a 
record of time series  recomputed over subsamples, 
or blocks of size b that retain the dependence structure 
of the observations:    

tY
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 The optimal choice of the block size currently 
presents the most difficult practical problem in using the 
subsampling method shared by all blocking methods.  
We first compare the performances of conventional 
technique and subsampling for optimally chosen block 
sizes (Subsection 3.1), then outline, following Gluhovsky 
et al. (2005), how the optimal block size can be 
determined (Subsection 3.2).  A different approach to 
the optimal block size selection was employed by 
Gluhovsky and Agee (2002). 
 
 
 
3.1 Subsampling Confidence Intervals for the 
 Nonlinear Model 
 
Coverage probabilities of 90% subsampling (symmetric 
percentile) CIs for the variance of tY  (model (3)) are 
presented in Table 2 together with the widths of CIs.  
Unlike CIs (2b) that did not grow with a, which resulted 
in a diminishing coverage, the subsampling CIs expand 
with increasing a like those on the third line of Table 1, 
so that their coverage remains practically the same.  
The latter makes subsampling CIs practical in various 
complex dependent data situations, and will also make it 
possible to achieve, using calibration, the target 
coverage. 
 
 
 Table 2. Coverage probabilities of 90%  
 subsampling CIs for the variance of  tY
 ___________________________________ 
 
 a 0.00 0.20 0.35 
 ___________________________________ 
 
 Coverage probabilities 0.87 0.86 0.85 
 
 Width of subsampling CI 0.22 0.33 0.50 
 ___________________________________ 
 

3.2 Choice of the optimal block size 
 
The asymptotic conditions for consistency of the 
subsampling method,  
 

   and / 0   as   b b N N→∞ → →∞  
 
i.e., the block size b needs to tend to infinity with the 
sample size N, but at a smaller rate (Politis et al. 1999), 
do not give much guidance for the choice of b in the 
practical case of a finite sample. 
 Figure 3 presents the results of Monte Carlo 
simulations showing how the actual coverage probability 
of subsampling CIs with nominal level of 90% for the 
mean of models (1) with 0.67φ =  and (3) with 

0.67φ = , , depend on the block size.  1000 
realizations of length  of a model time series 
were generated, a 90% symmetric percentile 
subsampling CI for the mean was computed for each 
realization, based on the same block size b, and the 
coverage probability was determined as before by 
counting the proportion of times the parameter was 
inside the CI.  The procedure was then repeated for 
various choices of b.   

0.15a =
512n =
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Fig. 3. Dependence on block size b of coverage 
probabilities of confidence intervals for the means of 

tX  (solid) and  (dashed).   tY
 
 Figure 3 demonstrates that the “highest” level of 
actual coverage probabilities remains roughly the same 
for a range of block sizes.  A block size from such range 
may be appropriate for the computation of the CIs for 
both models.  But to reach the target coverage (.90 in 
this example), a calibration is required.  For example, in 
case of model (3) and , subsampling CIs with 
the nominal confidence of 95% and with the block size b 
from the “optimal” range had to be computed to obtain 
the actual 90% confidence.   

512n =

 In reality, the model is unknown, and only one 
record of the time series under study is commonly 
available.  Therefore, to determine the optimal block 
size, the first step in the previous simulation, where 
independent realizations were generated, has to be 



modified.  Gluhovsky et al. (2005) suggested the 
following scheme.  The single realization of  
data points is ‘wrapped’ around a circle, then p points 
(say, ) on the circle are chosen at random 
(following a uniform distribution on the circle) as starting 
points for p consecutive segments of a pseudo 
realization.  The length of each segment is 

512n =

16p =

/n p , so the 
pseudo realization is again of length n.  The procedure 
is repeated to generate 1000 such pseudo realizations, 
that replace 1000 independent realizations of a model 
time series, and the coverage is determined as before. 
 In Figure 5, the thick solid curve was taken from the 
previous Monte Carlo simulation of model (1) time 
series (Figure 3).  The curve results from independent 
realizations and shows the actual coverage.  Each 
dashed curve in Figure 4 was obtained from pseudo 
realizations generated from one realization (different for 
each dashed curve) of the same model.  Although the 
maxima of the dashed curves vary wildly (depending on 
which initial realization was used), they still retain the 
shape of the solid curve, indicating the possibility to 
determine the optimal block size even when the model 
is unknown.  The thick dashed curve shows the result of 
averaging over 100 thin dashed curves. 
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Fig. 4. Coverage probabilities of subsampling 
confidence intervals for the mean of tX  from Monte 
Carlo simulation (solid curve) and from simulations 
based on one realization (dashed curves). 
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Fig. 5. Coverage probabilities of subsampling 
confidence intervals for the mean of  from 
simulations based on one realization.  

tW

 A similar exercise was performed with the record of 
the vertical velocity shown in Figure 1, with the resulting 
curve presented in Figure 5.  To achieve the target 
coverage, calibration based on an appropriate 
approximating model could be used.  
 
 
 
4. CONCLUSION 
 
It was discussed how subsampling may become 
instrumental in obtaining reliable inference from 
meteorological and climatological time series without 
making questionable assumptions about the data 
generating mechanism. 
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