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Abstract— Information on ice cover extent over seas is crucial for ship navigation. 
Ice cover can also show interannual fluctuations and reflects climate variations. 
Ability of satellites to provide global observations at high temporal frequency has 
made them the primary tool for the ice cover monitoring. This study is a part of 
GOES-R Cryosphere application group effort to develop new, and improve 
existing, applications for the future GOES-R Advanced Baseline Imager (ABI). In 
this paper, a new approach was developed to minimize the effect of both 
observation and illumination angles on the ice mapping accuracy. A Bidirectional 
Reflectance Distribution Function (BRDF) was developed to simulate the 
reflectance of ice and water over the Caspian Sea. The ultimate objective of this 
research is to develop a daily ice concentration map. The estimation of the 
reflectance of water and ice is a step toward the achievement of this goal. The 
Northern region of the Caspian Sea has been selected for algorithm development 
and calibration. Artificial Neural Networks (ANN) have been used to simulate 
reflectance values for both water and ice from solar, azimuth and satellite angles. 
Data collected by SEVIRI instrument onboard of Meteosat Second Generation 
(MSG) satellite have been used as a prototype. The approach used in the 
algorithm development includes daily cloud-clear image compositing. The 
simulated reflectances were compared to observed values and have shown a 
satisfactory agreement. This implies that the BRDF model coupled with ANN 
technique can be used to simulate reflectance values.

Satellite observations in the visible and infrared spectral bands have also been 
used for ice mapping (Kwok et al. 1995). A widely used approach to the 
atmospheric correction of satellite observations over water consists in the use of 
physically-based models which explicitly account for the Rayleigh and aerosol 
scattering as well as water vapor, ozone and other atmospheric gases absorption. 

Application of this approach to ice cover identification and mapping from 
geostationary satellites may not be effective. First, accurate information on 
aerosol characteristics and large scale distribution is not generally available. 
Second, the existing atmospheric correction models can provide reliable results 
only for solar or satellite zenith angle below about 60 deg.  The latter limitation is 
serious since low-solar elevation conditions are typical for observations over ice
covered areas. Besides that, areas affected by seasonal and perennial ice are 
located above 45-50 deg N and hence corresponding view angles for 
geostationary satellites at zenith angles exceed 50 deg. Therefore, in this study 
we have used an empirical approach to the atmospheric and angular correction. 

In this approach in order to characterize bidirectional properties of the top of the 
atmosphere reflectance we have used a linear combination of functions 
depending on observation geometry angles (solar-satellite relative azimuth along 
with solar and satellite zenith angles). This simplified approach cannot adequately 
represent bidirectional effects for all possible geometries. However, observation 
geometries involved in ice identification and mapping from geostationary satellites 
are limited to high solar zenith and satellite zenith angles, generally over 50 deg. 
Thus for this particular application, the use of an empirical approach may be 
appropriate. 

where: SAT is the satellite angle; ARZ is the azimuthal angle and SOL is the solar 
angle and Robs is the observed reflectance.
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This study is a first attempt to apply a Bidirectional Reflectance 
Distribution Function (BRDF) model for ice cover mapping. 
Moreover, an Artificial Neural network technique has been also 
utilized for model calibration and application. Artificial neural 
networks have been widely utilized in remote sensing applications 
(Benediktsson et al. 1990; Paola; Schowengerdt 1995).  Multi-layer 
perceptron trained by backpropagation algorithm is the most 
common neural network used for image classification.  This type of 
neural network has been successfully applied to image processing
and has shown a great potential in the classification of different 
types of remotely sensed data. In contrary to traditional techniques 
such as regression analysis, neural network uses its complex 
configuration to find the best nonlinear function between the input 
and the output data without any constraint of linearity or prespecified
non-linearity (Ghedira et al. 2007; Ghedira et al. 2005). 
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The cloud 
discrimination 
potentials of the near-
infrared channel can 
be also seen in Figure 
3. This figure shows 
the reflectance of the 
four optical channels at 
11:45 am local time. 
These data were 
collected on January 
23rd 2007.

simulations were carried out, according to the flowchart of Figure 2. Cloudy 
pixels were detected and eliminated. Then, the neural network was trained. 
The primary goal of this training step is the estimation of the weights 
connecting the nine input-layer nodes (angles + trigonometric 
transformations) to the 20 hidden nodes, and then the ones connecting 
hidden nodes with the output layer containing the observed reflectance. 
Two separate neural networks with same structure have been trained to 
simulate ice and water reflectances.
Figures 4 and 5 show the simulated reflectances for ice and water 
respectively. Firstly, these results illustrate a satisfactory agreement 
between simulated and observed reflectances. The root mean squared 
errors (RMSE) for both ice and water, summarized in table 1, are non 
significant. However, RMSE values were systematically higher when ice 
reflectances are simulated. This can be explained by the fact that ice 
reflectance are highly affected by ice features such as roughness, thickness 
and presence of fractional ice. RMSE obtained with simulated water 
reflectances can be generated by the variation of water reflectance due to 
the atmospheric effect as well as to water properties such as high 
concentration in sediments, presence of river deltaic deposits and presence 
of fractional ice. In future work, the simulated reflectances will be used to 
retrieve these features. 
Overall, the simulated performances are acceptable and very encouraging. 
This implies that a combination of BRDF model and ANN allows simulating 
ice and water reflectances.

In this research, the SEVIRI instrument onboard Meteosat Second 
Generation (MSG) satellite was used as a prototype for the future GOES-R 
ABI. A neural-network-based model has been used to simulate water and 
ice reflectances over the Caspian Sea. Pixels geometry defined by the 
three solar, azimuthal and satellite angles were the primary input to the 
model. The developed ice detection and mapping algorithm have been 
tested over the Caspian Sea. The obtained acceptable results have shown 
that a neural-network-based BRDF model has an interesting potential for 
ice mapping and monitoring from geostationary platforms. 

Figure 1 The Caspian Sea (http://en.wikipedia.org/wiki/Caspian_Sea)

Figure 2 Flowchart  of ice and water reflectance estimation

Figure 4 Observed and simulated ice reflectances Figure 5 water reflectances

Figure 3 Reflectance of four optical channels

mailto:ghedira@ccny.cuny.edu
mailto:temimi@ce.ccny.cuny.edu
mailto:Khanbilvardi@ccny.cuny.edu
mailto:Peter.Romanov@noaa.gov
http://www.ametsoc.org/meet/

