Handout (961.4 kB)
[1] Pathak J., Subramanian S., Harrington P., Raja S., Chattopadhyay A., Mardani M., Kurth T., Hall D., Li Z., Azizzadenesheli K., Hassanzadeh P., Kashinath K., and Anandkumar A., “FourCastNet: A Global Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators”, arXiv:2202.11214 (2022).
[2] Bi K., Xie L., Zhang H., Chen X., Gu X., and Tian Q, “Accurate medium-range global weather forecasting with 3D neural networks”, Nature 619, 533-538 (2023).
[3] Lam R., Sanchez-Gonzalez A., Willson M., Wirnsberger P., Fortunato M., Alet F., Ravuri S., Ewalds T., Eaton-Rosen Z., Hu W., Merose A., Hoyer S., Holland G., Vinyals O., Stott J., Pritzel A., Mohamed S., and Battaglia P., “GraphCast: Learning skillful medium-range global weather forecasting”, arXiv:2212.12794 (2022).
[4] Zhou L., and Zhang R.-H., “A self-attention-based neural network for three-dimensional multivariate modeling and its skillful ENSO predictions,” Science Advances 9 (2023).
[5] Ham Y.-G., Kim J.-H., and Luo J.-J., “Deep learning for multi-year ENSO forecasts”, Nature 573, 568-572 (2019).
[6] Arcomano T., Szunyogh I., Wikner A., Hunt B., and Ott E., “A Hybrid Atmospheric Model Incorporating Machine Learning Can Capture Dynamical Processes Not Captured by Its Physics-Based Component”, Geophysical Research Letters, 50 (2023).
 - Indicates paper has been withdrawn from meeting
 - Indicates paper has been withdrawn from meeting - Indicates an Award Winner
 - Indicates an Award Winner