The mean stratocumulus cloud fraction, optical depth, and vertical fluxes of heat, moisture and momentum are found to be quite sensitive to both the domain size and the resolution. The sensitivities are associated with a strong feedback between cloud fraction, cloud-top radiative cooling, and entrainment. The properties of individual cumulus clouds rising into the stratocumulus are less affected than the stratocumulus clouds. The simulations with 80 m horizontal/40 m vertical resolution are clearly under-resolved, with distinctly different distributions of liquid water within the clouds. Increasing the resolution to finer than 40 m horizontal/20 m vertical affects the inversion structure and entrainment processes somewhat, but has less impact on the structure of individual clouds. Large-domain simulations exhibit mesoscale structure in the cloud organization and liquid water path. This mesoscale variability feeds back on the domain-mean properties through the cloud-radiative feedback. These simulations suggest that very large computations are required to obtain meaningful cloud statistics for this case.
Attached is an images of simulated cloud albedo that shows much of the simulated mesoscale structure.
Supplementary URL: