To address this, we propose Computational Reconfigurable Imaging Spectrometer (CRISP), a new imaging spectrometer suitable for hyperspectral and multispectral missions. The design of this system will enable high performance from smaller and less- expensive components such as uncooled microbolometers, and thus be more suitable for small satellites that can be deployed in constellations. CRISP is a novel design that exploits platform motion, dispersive elements, and coded sensing techniques to make a time series of encoded measurements of the optical spectrum at each pixel. This encoding is inverted using specialized processing to recover the spectrum. The proposed effort will demonstrate significant sensitivity and other advantages over existing imaging spectrometer designs, enabling miniaturization and improved area coverage. Spectral and spatial resolution and coverage can be traded off with a simple configuration change to encompass multiple mission types. As a particular example, the effort will demonstrate that an uncooled CRISP system can provide longwave sensitivity and spectral resolution comparable to existing IR sounding instruments, with improved spatial resolution that may enhance boundary layer observation and complement existing midwave Cubesat sounder efforts.
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner