221 On the Variability of the Semidiurnal Solar and Lunar Tides of the Equatorial Electrojet during Sudden Stratospheric Warmings

Monday, 7 January 2019
Hall 4 (Phoenix Convention Center - West and North Buildings)
Tarique Siddiqui, NCAR, Boulder, CO; and A. Maute, N. Pedatella, Y. Yamazaki, H. Luehr, and C. Stolle

The variabilities of the semidiurnal solar and lunar tide of the equatorial electrojet (EEJ) are investigated during the 2003, 2006, 2009 and 2013 major sudden stratospheric warming (SSW) events in this study. For this purpose, the ground-magnetometer recordings at the equatorial observatories in Huancayo and Fuquene are utilized. Results show a major enhancement in the amplitude of the EEJ semidiurnal lunar tide in each of the four warming events. The EEJ semidiurnal solar tidal amplitude shows an amplification prior to the onset of warmings, a reduction during the deceleration of the zonal mean zonal wind at 60°N and 10hPa and a second enhancement a few days after the peak reversal of the zonal mean zonal wind during all the four SSWs. Results also reveal that the amplitude of the EEJ semidiurnal lunar tide becomes comparable or even greater than the amplitude of the EEJ semidiurnal solar tide during all these warming events. The present study also compares the EEJ semidiurnal solar and lunar tidal changes with numerical simulations of the variability of the migrating semidiurnal solar (SW2) and lunar (M2) tide in neutral temperature at ~120km altitude. A better agreement between the enhancements of the EEJ semidiurnal lunar tide and the M2 tide in neutral temperature is observed in comparison with the enhancements of the EEJ semidiurnal solar tide and the SW2 tide in neutral temperature.
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner