DART provides traditional ensemble data assimilation algorithms that implicitly assume Gaussianity and linearity. Traditional algorithms can still work when these assumptions are violated. However, it is possible to greatly improve results by extending ensemble algorithms to explicitly account for aspects of nonlinearity and non-Gaussianity. Two new algorithms have been added to DART. 1). Anamorphosis transforms variables to make the assimilation problem more linear and Gaussian before transforming posterior estimates back to the original model variables; 2). The marginal correction rank histogram filter (MCRHF) directly represents arbitrary non-Gaussian distributions. These methods are particularly valuable for data assimilation for bounded quantities like tracers or streamflow.
DART is being applied to a number of novel applications. Examples in the poster include 1). An eddy-resolving global ocean ensemble reanalysis with the POP ocean model and an ensemble optimal interpolation; 2). The WRF-Hydro/DART system now includes a multi-parametric ensemble, anamorphosis, and spatially-correlated noise for the forcing fields. 3). Results from the Carbon Monitoring System over Mountains using CLM5 to assimilate remotely-sensed observations (LAI, biomass, and SIF) for a field site in Colorado; 4).Assimilation of MODIS snow cover fraction and daily GRACE total water storage data and its impact on soil moisture using the DART/NOAH-MP system.5). An ensemble atmospheric reanalysis using the CAM general circulation model.