A recent study by Hart [2011] deduced a statistical relationship between northern hemisphere TC activity (evaluated using both TC count and power dissipation [Emanuel, 2007]) and the subsequent winter climate. Hart [2011] ascertained that there exists a strong (statistical) inverse relationship between the amount of pole-ward TC power-dissipation (e.g., recurving TCs) and the 500-hPa extratropical stationary eddy-temperature flux, and speculated on the physical (and potential nonphysical) explanations for such a relationship. Indeed, the relationship was so strong that it was the most robust predictor of this measure of wind activity amidst all known teleconnection indices. These prior works provide the foundation on which to further explore the TC role in climate. Accordingly, in this study, we diagnose the climatic impact of TCs upon the Earth's general circulation using the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM) and the TC vortex removal procedure discussed by Winterbottom and Chassignet [2011].
A series of experiments with and without TCs will be compared. We will evaluate the mean and transient eddy fluxes as a function of a simulation with TCs and a simulation without. We will also analyze the tropical wave characteristics and the position and strength of the Hadley Cell also as functions of TC presences. Finally, we will present the initial results from this ongoing study and will provide a hypothesis for the climatic role of TCs within the Earth's general circulation.