Wednesday, 8 May 2024: 2:45 PM
Shoreline AB (Hyatt Regency Long Beach)
The Madden-Julian Oscillation (MJO) is often used for subseasonal forecasting of tropical cyclone (TC) activity. However, TC activity still has considerable variability even given the state of the MJO. This study evaluates the connection between MJO propagation speed and Atlantic TC activity and possible physical mechanisms guiding this relation. We find the Atlantic sees the highest accumulated cyclone energy (ACE) during MJO phase two. However, the odds of above average ACE in the Atlantic is greatest during slow MJO propagation. We find that slow propagation of the MJO results in lower vertical wind shear anomalies over the Caribbean and main development region compared with typical MJO propagation. Typical MJO propagation produces an amplified height pattern and lower height anomalies along the region of the tropical upper tropospheric trough which is known to impede Atlantic TC activity. Slow MJO propagation sees weaker height anomalies over the Atlantic.

