Preliminary findings indicate distinct seasonal landfalling patterns of vapor lakes following the warmest SST, but they are stronger in the southern hemisphere. Tracking studies of some vapor lakes show lifespans exceeding a week with behaviors like merging and splitting and an east-to-west drift. The study's composite analysis indicates a distinct peak for clouds and precipitation within the confines of vapor lakes. Inside these lakes, we observed a marked moisture convergence corresponding to the P-E sink. These lakes also have vorticity signatures, raising the question of whether moisture or momentum fields are more important to their dynamics. Also, many other variables exhibit structure across the vapor lake boundary. Future work includes evaluating model forecasts and simulations to gain deeper insights into the longevity and propagation mechanisms of these systems, and the ability of the models to capture these.

