This study utilizes retrievals of the symmetric wind field based on geostationary satellite infrared (IR) imagery from the Colorado State University (CSU) Cooperative Institute for Research in the Atmosphere (CIRA). The IR WinD (IRWD) retrievals are based on a statistical relationship between patterns in IR imagery and wind observations from aircraft reconnaissance; and the IRWD give information on the lower-tropospheric (850 & 700 hPa) TC vortex in the motion-critical annulus. We generate superobs' from the high-density IRWD retrievals by calculating the mean values at spatial scales appropriate for the model and data assimilation system and for this study use a scale of 90 km. The IRWD superobs were first tested for Hurricane Celia (04E) and Hurricane Darby (05E) in the eastern North Pacific -- two TCs that formed in late June 2010, because the Global Forecast System NWP model (GFS) failed to assimilate the central surface pressure and to accurately forecast the TC intensity. The superobs for the 04E and 05E cases were shown to be consistent with the wind radii in the TC vitals and when applied to the Ensemble Kalman Filter (EnKF) data assimilation for the GFS improved both the global NWP model TC track and intensity forecast. In addition to the test cases, we will show results for other storms and basins during the 2010 northern Hemisphere season.