J15.6
Assimilation of trace gas retrievals with the Local Ensemble Transform Kalman Filter

- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner
Wednesday, 26 January 2011: 5:15 PM
Assimilation of trace gas retrievals with the Local Ensemble Transform Kalman Filter
2A (Washington State Convention Center)
David D. Kuhl, NRL, Washington, DC; and I. Szunyogh and B. Pierce

We present results of the assimilation of trace gas concentration observations with an implementation of the Local Ensemble Transform Kalman Filter (LETKF) data assimilation system on the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) NWP model. We use a modified version of the NCEP GFS model that was operational in 2004 at resolution T62/L28. We modify the model by adding parameterization for the process of convective mixing of the trace gases. We consider two specific trace gases: ozone (O3) and carbon monoxide (CO). We incorporate these gases into the model by using 3-dimensional time-dependent O3 and CO production-loss values from the Real-time Air Quality Modeling System (RAQMS) global chemical model. The O3 observations we assimilate are from the Solar Backscatter UltraViolet generation 2 (SBUV/2) satellite instrument (version 8) flown on the NOAA 16 and 17 satellites. The CO observations we assimilate are from the Measurements Of Pollution In The Troposphere (MOPITT) instrument (version 3) flown on the NASA TERRA satellite. We also develop a new observation operator for the assimilation of retrievals with the LETKF.

We carry out numerical experiment for the period between 000UTC 1 July 2004 to 000UTC 15 August in the summer of 2004. The analysis and forecast impact of the assimilation of trace gas observations on the meteorological fields is assessed by comparing the analyses and forecasts to the high resolution operational NCEP GFS analyses and to radiosonde observations. The analysis and forecast impact on the trace gas fields is assessed by comparing the analyzed and predicted fields to observations collected during the Intercontinental Chemical Transport Experiment (INTEX-A) field mission. The INTEX-A field mission was conducted to characterize composition of pollution over North America, thus providing us with ozonesonde and aircraft based verification data.

We find that adding the process of convective mixing to the parameterization package of the model and the assimilation of observations of the trace gases improves the analysis and forecast of the concentration of the trace gases. In particular, our system is more accurate in quantifying the concentration of O3 in the troposphere than the original NCEP GFS. Also, our system is competitive with the state-of-the-art RAQMS atmospheric chemical model in analyzing the concentration of O3 and CO throughout the full atmospheric model column.

The assimilation of O3 and CO observations has a mixed impact on the analysis and forecast of the meteorological fields. We find that most of the negative impact on the meteorological fields can be eliminated, without much reduction to the positive impact on the trace gas fields, by inflating the prescribed variance of the trace gas observations.