92nd American Meteorological Society Annual Meeting (January 22-26, 2012)

Monday, 23 January 2012
Analysis of Tropical Cyclone Eye Slope Using Airborne Radar Reflectivity Data
Hall E (New Orleans Convention Center )
Andrew Todd Hazelton, Florida State University, Tallahassee, FL; and R. E. Hart

Understanding and forecasting tropical cyclone intensity change continues to be one of the biggest challenges in atmospheric research and forecasting. While the large-scale processes that govern TC intensity change (such as wind shear and ocean temperature) are relatively well-understood, the same cannot be said for smaller-scale inner-core processes and structure. For example, while the eyewall of a hurricane is known from observations to tilt outward with increasing height, there is no theory or even robust observational study to explain the magnitude of this tilt or what changes in that tilt signify. The relative lack of observations in the inner-core region has made research difficult for many decades. However, the recent increase in research flights (e.g. GRIP, PREDICT) into the cores of tropical storms has provided data that allows us to better analyze the complex factors that drive changes in the inner-structure of storms. This study makes use of airborne radar reflectivity data from different field experiments and a group of reconnaissance flights into hurricanes to study the vertical structure of the TC inner-core; specifically the slope of the eye. We analyze the relationship between the eye slope and the current storm intensity, and compare our results with the limited previous work on this topic (e.g. Stern and Nolan 2009, Shea and Gray 1973). We also investigate the relationship between the eye slope and the short-term intensity change, with hopes of better understanding the physical processes that result from changes in the eye structure. It is also hoped that this relationship with short-term intensity change may prove valuable in forecasting intensity.

Supplementary URL: