92nd American Meteorological Society Annual Meeting (January 22-26, 2012)

Monday, 23 January 2012
An Evaluation of Tropical Cyclogenesis Theories Through Intercomparison of Field Experiment Observations
Hall E (New Orleans Convention Center )
Chip N. Helms, Florida State University, Tallahassee, FL; and R. E. Hart

The process by which tropical cyclones evolve from loosely organized convective clusters into well organized systems is still poorly understood. A number of theories have been proposed to explain this evolution based on vortex dynamics, adiabatic processes, and diabatic processes. Due to the data sparse location in which many of these systems develop, many studies of tropical cyclogenesis theory are limited to either a few case studies or are forced to rely on simulations to critically evaluate the theories. The recent PREDICT and GRIP field experiments have provided a new opportunity to examine these theories using unusually dense observations.

The present study aims at using this new data in conjunction with data from previous field experiments, such as NAMMA, GATE, and TOGA COARE, to evaluate three existing theories: top-down vortex merger (Ritchie and Holland, 1997; Simpson et al., 1997), top-down shower-head (Emanuel, 1993; Bister and Emanuel, 1997), and bottom-up vortex merger (Montgomery and Enagonio, 1998; Enagonio and Montgomery, 2001). Additionally, these observations are used to briefly examine the newer marsupial framework for tropical cyclogenesis in African easterly waves (Dunkerton et al. 2009). The processes associated with each of these theories create unique signatures in wind, vorticity, potential temperature, and humidity fields. Timelines of these fields, created from composited mean dropsonde soundings, are used to determine the system-wide evolution. Further, the temporal evolution of sub-system processes, which are minimized or removed as a result of the compositing process, are identified in isobaric surface plot series. While previous studies have shown that no theory completely explains tropical cyclogenesis, it is hoped that a thorough analysis of these data sets will highlight both consistencies and inconsistencies between theory and observation.

Supplementary URL: