Wednesday, 25 January 2012
Microburst Nowcasting Applications of GOES
Hall E (New Orleans Convention Center )
Poster PDF (809.8 kB)
Recent testing and validation have found that the Geostationary Operational Environmental Satellite (GOES) microburst products are effective in the assessment and short-term forecasting of downburst potential and associated wind gust magnitude. Two products, the GOES sounder Microburst Windspeed Potential Index (MWPI) and a new bi-spectral GOES imager brightness temperature difference (BTD) product have demonstrated capability in downburst potential assessment. In addition, a comparison study between the GOES-R Convective Overshooting Top (OT) Detection and MWPI algorithms has been completed for cases that occurred during the 2007 to 2009 convective seasons over the southern Great Plains. Favorable results of the comparison study include a statistically significant negative correlation between the OT minimum temperature and MWPI values and associated measured downburst wind gust magnitude. The negative functional relationship between the OT parameters and wind gust speed highlights the importance of updraft strength, realized by large CAPE, in the generation of heavy precipitation and subsequent intense convective downdraft generation. This paper provides an updated assessment of the GOES MWPI and GOES BTD algorithms, presents case studies demonstrating effective operational use of the microburst products, and presents results of a cross comparison study of the GOES-R overshooting top (OT) detection algorithm over the United States Great Plains region.
Supplementary URL: http://www.star.nesdis.noaa.gov/smcd/opdb/kpryor/nesdistechrpt140.pdf