Impact of Polyethylene Plastic on Smoke Emissions from Debris Piles

- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner
Thursday, 6 February 2014: 11:15 AM
Room C206 (The Georgia World Congress Center )
David R. Weise, USDA Forest Service, Pacific Southwest Research Station, Riverside, CA; and H. Jung, D. Cocker, E. Hosseini, Q. Li, M. Shrivastava, and M. McCorison

Shrubs and small diameter trees exist in the understories of many western forests. They are important from an ecological perspective; however, this vegetation also presents a potential hazard as “ladder fuels” or as a heat source to damage the overstory during prescribed burns. Cutting and piling of this material to burn under safe conditions is a common silvicultural practice. To improve ignition success of the piled debris, polyethylene plastic is often used to cover a portion of the pile. While burning of piled forest debris is an acceptable practice in southern California from an air quality perspective, inclusion of plastic in the piles changes these debris piles to rubbish piles which should not be burned. With support from the four National Forests in southern California, we conducted a laboratory experiment to determine if the presence of polyethylene plastic in a pile of burning wood changed the smoke emissions. Debris piles in southern California include wood and foliage from common forest trees such as sugar and ponderosa pines, white fir, incense cedar, and California black oak and shrubs such as ceanothus and manzanita in addition to forest floor material and dirt. Manzanita wood was used to represent the debris pile in order to control the effects of fuel bed composition. The mass of polyethylene plastic incorporated into the pile was 0, 0.25 and 2.5% of the wood mass—a range representative of field conditions. Measured emissions included NOx, CO, CO2, SO2, polycyclic and light hydrocarbons, carbonyls, particulate matter (5 to 560 nm), elemental and organic carbon. The presence of polyethylene did not alter the emissions composition from this experiment.