Evaluation of the WRF-CMAQ modeling system to the 2011 DISCOVER-AQ Baltimore-Washington D.C. study

- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner
Monday, 3 February 2014
Hall C3 (The Georgia World Congress Center )
K. Wyat Appel, EPA, Research Triangle Park, NC; and R. Gilliam, G. A. Pouliot, J. M. Godowitch, J. E. Pleim, C. Hogrefe, D. Kang, S. J. Roselle, and R. Mathur

The DISCOVER-AQ project (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality), is a joint collaboration between NASA, U.S. EPA and a number of other local organizations with the goal of characterizing air quality in urban areas using satellite, aircraft, vertical profiler and ground based measurements (http://discover-aq.larc.nasa.gov). In July 2011, the DISCOVER-AQ project conducted intensive air quality measurements in the Baltimore, MD and Washington, D.C. area in the eastern U.S. To take advantage of these unique data, the Community Multiscale Air Quality (CMAQ) model, coupled with the Weather Research and Forecasting (WRF) model is used to simulate the meteorology and air quality in the same region using 12-km, 4-km and 1-km horizontal grid spacings. The goal of the modeling exercise is to demonstrate the capability of the coupled WRF-CMAQ modeling system to simulate air quality at fine grid spacings in an urban area. Development of new data assimilation techniques and the use of higher resolution input data for the WRF model have been implemented to improve the meteorological results, particularly at the 4-km and 1-km grid resolutions. In addition, a number of updates to the CMAQ model were made to enhance the capability of the modeling system to accurately represent the magnitude and spatial distribution of pollutants at fine model resolutions. Data collected during the 2011 DISCOVER-AQ campaign, which include aircraft transects and spirals, ship measurements in the Chesapeake Bay, ozonesondes, tethered balloon measurements, DRAGON aerosol optical depth measurements, LIDAR measurements, and intensive ground-based site measurements, are used to evaluate results from the WRF-CMAQ modeling system for July 2011 at the three model grid resolutions. The results of the comparisons of the model results to these measurements will be presented, along with results from the various sensitivity simulations examining the impact the various updates to the modeling system have on the model estimates.