GROUP-C and LITES Experiments for Ionospheric Remote Sensing aboard the ISS

- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner
Monday, 3 February 2014
Hall C3 (The Georgia World Congress Center )
Scott A. Budzien, NRL, Washington, DC; and A. W. Stephan and S. Chakrabarti

Ionospheric irregularities, also known as ionospheric bubbles, are transient features of the low and middle latitude ionosphere with important implications for operational systems. Understanding irregularity formation, development, and evolution is vital for efforts within NASA and DoD to forecast scintillation. Irregularity structures have been studied primarily using ground-based systems, though some spaced-based remote and in-situ sensing has been performed. An ionospheric observatory aboard the International Space Station (ISS) would provide new capability to study low- and mid-latitude ionospheric structures on a global scale. The GPS Radio Occultation and Ultraviolet Photometry Colocated (GROUPC) and the Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) experiments are being considered for flight aboard the Space Test Program Houston 5 (STP-H5) experiment pallet. By combining for the first time high-sensitivity in-track photometry with vertical ionospheric airglow spectrographic imagery, we demonstrate that high-fidelity optical tomographic reconstruction of bubbles can be performed from the ISS. Ground-based imagery can supplement the tomography by providing all-sky images of ionospheric structures (e.g. bubbles and TIDs) and of signatures of lower atmospheric dynamics, such as gravity waves, that may play a role in irregularity formation. The optical instrumentation can be augmented with additional sensors to provide measurements of scintillation and in situ plasma density, composition, and drifts.