Toward the development of an evaluation framework of Climate Data Records for precipitation: A characterization of CONUS rainfall using a suite of satellite, radar, and rain gauge datasets

- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner
Thursday, 6 February 2014: 9:15 AM
Room C210 (The Georgia World Congress Center )
Olivier P. Prat, Cooperative Institute for Climate and Satellites/North Carolina State University, Asheville, NC; and B. R. Nelson

We use a suite of quantitative precipitation estimates (QPEs) derived from satellite, radar, surface observations, and models to derive precipitation characteristics over CONUS for the period 2002-2012. This comparison effort includes satellite multi-sensor datasets of TMPA 3B42, CMORPH, and PERSIANN. The satellite based QPEs are compared over the concurrent period with the NCEP Stage IV product, which is a near real time product providing precipitation data at the hourly temporal scale gridded at a nominal 4-km spatial resolution. In addition, remotely sensed precipitation datasets are compared with surface observations from the Global Historical Climatology Network (GHCN-Daily) and from the PRISM (Parameter-elevation Regressions on Independent Slopes Model), which provides gridded precipitation estimates that are used as a baseline for multi-sensor QPE products comparison. The comparisons are performed at the annual, seasonal, monthly, and daily scales with focus on selected river basins (Southeastern US, Pacific Northwest, Great Plains). While, unconditional annual rain rates present a satisfying agreement between all products, results suggest that satellite QPE datasets exhibit important biases in particular at higher rain rates (≥4 mm/day). The conditional analysis performed using different daily rainfall accumulation thresholds (from low rainfall intensity to intense precipitation) shows that while intense events measured at the ground are infrequent (around 2% for daily accumulation above 2 inches/day), remotely sensed products displayed differences from 20-50% and up to 90-100%. A discussion on the impact of differing spatial and temporal resolutions with respect to the datasets ability to capture extreme precipitation events is also provided. Furthermore, this work is part of a broader effort to evaluate long-term multi-sensor QPEs in the perspective of developing Climate Data Records (CDRs) for precipitation.