In this talk, our microfluidic platform will be used to probe the surface activity and rheological properties of atmospheric aerosol chemical mimics. From our experiments, thermodynamic properties such as interfacial tension, rheological properties such as interfacial moduli and viscosity, and kinetic properties such as mass transfer coefficients can be measured or inferred for a range of atmospheric aerosol chemical mimics. The chemical mimics studied here include aqueous solutions of sucrose and dicarboxylic acids, commonly used as SOA surrogates, at nearly saturated salt concentrations. These systems will be compared to our previous work on a reacting methylglyoxal—ammonium sulfate system and recent work on filter extracts of SOA formed by photooxidation of naphthalene. From observations of surface activity and rheological properties of these aerosol chemical mimics, the behavior of atmospheric aerosols due to interactions of liquid-liquid, phase-separated interfaces within aerosol particles and possible transitions to a glassy state will be inferred.
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner