Wednesday, 25 January 2017: 4:45 PM
Conference Center: Chelan 2 (Washington State Convention Center )
As a unified atmosphere-land hydrological modeling system, the WRF-Hydro (Weather Research and Forecasting model Hydrological modeling extension package) framework is being employed by the NOAA-National Water Center (NWC, Tuscaloosa, AL) to provide streamflow forecasting over the entire CONUS in 250 m resolution from hourly to monthly scale. Currently, efforts are focused on tests and an operational forecast launch on August 16th, 2016. But due to inconsistencies in the land surface hydrographic datasets between U.S. and Canada over the Great Lakes Basin, many of the tributaries feeding the Great Lakes and the major channels connecting the Great Lakes (including the Niagara, St. Clair, and Detroit Rivers) are missing or poorly represented in the current NWC streamflow forecasting domain. Improvements in the model’s current representation of lake physics and stream routing are also critical for WRF-Hydro to adequately simulate the Great Lakes water budget and Great Lakes coastal water levels. To customize WRF-Hydro to the Laurentian Great Lakes Basin using protocols consistent with those used for the current CONUS operational domain, the NOAA-Great Lakes Environmental Research Laboratory has partnered with the National Center for Atmospheric Research (NCAR) and other agencies to develop land surface hydrographic datasets and compatible stream routing grids that connect to the current CONUS operational domain. This research group is also conducting 1-km resolution offline tests with WRF-Hydro based on current best available bi-national land surface geographic datasets to examine the model’s ability to simulate seasonal hydrological response over the Great Lakes (runoff and land-atmosphere fluxes) with its coupled overland flow terrain-routing module, subsurface lateral flow module and channel flow (runoff) module.
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner