Three-hourly predictions of the errors in 2-m surface temperature forecasts generated by the Advanced Regional Prediction System (ARPS) will be made for a large number (150-200) of surface observing stations in the continental United States. These predictions will be made by using a range of statistical techniques including Markov chains, non-linear analysis, regression, and error recycling. The error forecasts will be measured against NCEP model output statistics (MOS) temperature forecasts for the chosen sites to determine skill. Optimal linear combinations of these forecast schemes will also be examined. In order to form a statistical basis on which to use these methods, hourly surface data from each of the sites and archived ARPS forecasts will be collected. Error forecasts will be made for both dependent and independent NWP model data sets. Errors in temperature forecasts initially will be projected out to 4 days (96 hr) from model initialization. These projected errors will give a quantitative measure of confidence in the forecast at each site every 3 hours.
To view some of the results produced by these methods as they become available, please visit the following URL:
http://weather.ou.edu/~aataylor/research
Supplementary URL: