Thursday, 21 April 2016
Plaza Grand Ballroom (The Condado Hilton Plaza)
The hindcasts of the Geophysical Fluid Dynamics Laboratory (GFDL) High-Resolution Atmospheric Model (HiRAM), which skillfully predicted the interannual variability of Atlantic tropical cyclone (TC) frequency, were analyzed to investigate what key circulation systems a model must capture in order to skillfully predict TCs. The HiRAM reproduced the leading EOF mode (M1) of the interannual variability of the Atlantic Hadley circulation and its impacts on environmental conditions. M1 represents the variability of the ITCZ intensity and width, and the predictability of Atlantic TCs can be explained by the lag correlation between M1 and SST in preceding months. Although the ITCZ displacement was not well predicted by the HiRAM, it does not affect the prediction of the basin-wide hurricane count. The analyses suggest that the leading mode of the variability of the regional Hadley circulation can serve as a useful metric to evaluate the performance of global models in TC seasonal prediction.
- Indicates paper has been withdrawn from meeting
- Submission entered in competition