This study will use both traditional verification techniques and spatial verification techniques (e.g. intensity skill score) to evaluate two parallel WRF model forecasts, one that assimilates radar data in the initial condition using a 3DVAR technique (CN) and one that simply uses the 12-km North American Mesoscale (NAM) model analysis as the initial condition (C0). These forecasts were run in real-time by the Center for Analysis and Prediction of Storms (CAPS) during the Spring of 2009 and 2010 in support of the NOAA Hazardous Weather Testbed (HWT) annual Spring Experiment and the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX-2) field program. The Spring Experiment participants noted, subjectively, that the skill that was suggested by the traditional objective metrics often seemed large compared to the skill than was perceived by the participants. For this study, both traditional and newer verification metrics that take the bias and spatial scales of the forecasts into account will be computed to characterize the spatial scales and lead times at which skill diminishes for forecasts of convection. This study will also examine the performance of the real-time 3-km High Resolution Rapid Refresh (HRRR) forecasts over the same time period in a similar manner.