752
Assimilation of GOES satellite based convective initiation data into the Rapid Refresh and HRRR systems to improve aviation forecast guidance
Handout (3.5 MB)
The RAP is an hourly assimilation system developed at NOAA/ESRL and was implemented at NCEP as a NOAA operational model in May 2012. The 3-km HRRR runs hourly out to 15 hours as a nest within the ESRL real-time experimental RAP. The RAP and HRRR both use the WRF ARW model core, and the Gridpoint Statistical Interpolation (GSI) is used within an hourly cycle to assimilate a wide variety of observations (including radar data) to initialize the RAP. Within this modeling framework, the cloud-top cooling rate-based latent heating profiles are applied as prescribed heating during the diabatic forward model integration part of the RAP digital filter initialization (DFI). No digital filtering is applied on the 3-km HRRR grid, but similar forward model integration with prescribed heating is used to assimilate information from radar reflectivity, lightning flash density and the satellite based cloud-top cooling rate data. In the current HRRR configuration, 4 15-min cycles of latent heating are applied during a pre-forecast hour of integration. This is followed by a final application of GSI at 3-km to fit the latest conventional observation data.
At the conference, results from a 5-day retrospective period (July 5-10, 2012) will be shown, focusing on assessment of data impact for both the RAP and HRRR, as well as the sensitivity to various assimilation parameters, including assumed heating strength. Emphasis will be given to documenting the forecast impacts for aviation applications in the Eastern U.S.