3.4A
Overview of the Diagnostic Cloud Forecast Model at the Air Force Weather Agency

- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner
Monday, 5 January 2015: 4:45 PM
129A (Phoenix Convention Center - West and North Buildings)
Edward P. Hildebrand, UCAR, Offutt AFB, NE

The Air Force Weather Agency (AFWA) is responsible for running and maintaining the Diagnostic Cloud Forecast (DCF) model to support DoD missions and those of their external partners. The DCF model generates three-dimensional cloud forecasts for global and regional domains at various resolutions. Regional domains are chosen based on Air Force mission needs. DCF is purely a statistical model that can be appended to any numerical weather prediction (NWP) model. Operationally, AFWA runs the DCF model deterministically using GFS data from NCEP and WRF data that are created in-house. In addition, AFWA also runs an ensemble version of the DCF model using the Mesoscale Ensemble Prediction System (MEPS).

The deterministic DCF uses predictor variables from the WRF or GFS models, depending on whether the domain is regional or global, and statistically relates them to observed cloud cover from the World-Wide Merged Cloud Analysis (WWMCA). The forecast process of the model uses an ordinal logistic regression to predict membership in one of 101 groups (every 1% from 0-100%). The predicted group membership then is translated into a cloud amount. This is performed on 21 pressure levels ranging from 1000 hPa to 100 hPa. Cloud amount forecasts on these 21 levels are used along with the NWP geopotential height forecasts to estimate the base and top heights of cloud layers in the vertical. DCF also includes routines to estimate the amount and type of cloud within each layer. Forecasts of total cloud amount are verified using the WWMCA, as well as independent sources of cloud data.

This presentation will include an overview of the DCF model and its use at AFWA. Results will be presented to show that DCF adds value over the raw cloud forecasts from NWP models. Ideas for future work also will be addressed.