Monday, 23 January 2017: 5:00 PM
Conference Center: Skagit 3 (Washington State Convention Center )
Recent warming of the Antarctic Peninsula during austral autumn, winter, and spring has been linked to sea surface temperature (SST) trends in the tropical Pacific and tropical Atlantic, while warming of the northeast Peninsula during summer has been linked to a strengthening of westerly winds traversing the Peninsula associated with a positive trend in the Southern Annular Mode (SAM). Here we demonstrate that circulation changes associated with the SAM dominate interannual temperature variability across the entire Antarctic Peninsula during both summer and autumn, while relationships with tropical Pacific SST variability associated with the El Niño-Southern Oscillation (ENSO) are strongest and statistically significant primarily during winter and spring only. We find the ENSO-Peninsula temperature relationship during autumn to be weak on interannual timescales, and regional circulation anomalies associated with the SAM more important for interannual temperature variability across the Peninsula during autumn. Consistent with previous studies, western Peninsula temperatures during autumn, winter, and spring are closely tied to changes in the Amundsen Sea Low (ASL) and associated meridional wind anomalies. The interannual variability of ASL depth is most strongly correlated with the SAM index during autumn, while the ENSO relationship is strongest during winter and spring. Investigation of western and northeast Peninsula temperatures separately reveals that interannual variability of northeast Peninsula temperatures is primarily sensitive to zonal wind anomalies crossing the Peninsula and resultant lee-side adiabatic warming rather than to meridional wind anomalies, which is closely tied to variability in the zonal portion of the SAM pattern.
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner