10.2 Observations of Aerosol–Cloud Interactions with Varying Vertical Separation between Biomass-Burning Aerosols and Stratocumulus Clouds over the South East Atlantic

Thursday, 11 January 2018: 9:00 AM
Room 12A (ACC) (Austin, Texas)
Siddhant Gupta, Univ. of Illinois, Urbana, IL; and G. M. McFarquhar, M. Poellot, J. R. O'Brien, D. Delene, and K. L. Thornhill

The ObseRvations of Aerosols above Clouds and their intEractionS (ORACLES) 2016 project provided in‐situ measurements and remotely sensed retrievals of aerosol and cloud properties over the South East Atlantic during September, 2016 with a second deployment scheduled for August, 2017. Biomass burning aerosol from Southern Africa is advected toward the South East Atlantic at elevated altitudes and overlies the ubiquitous stratocumulus cloud deck over the ocean. The aerosols subside farther from the coast so that the vertical displacement between the clouds and aerosols varies, and whose effect on aerosol-cloud interaction is poorly known.

A NASA P‐3 aircraft was equipped with a Cloud Droplet Probe CDP sizing particles between 2 and 50μm, a Cloud and Aerosol Spectrometer CAS sizing between 0.51 and 50 μm and a 2D‐stereo probe 2DS, nominally sizing between 10 and 1280 μm a Cloud Imaging Probe CIP, from 25 to 1600μm, and a High Volume Precipitation Sampler HVPS‐3, from 150μm to 1.92cm for measuring number distribution functions (n(D)) along with a King probe for measuring liquid water content, LWC. A Passive Cavity Aerosol Spectrometer Probe PCASP measured aerosol particles between 0.1 to 3μm.

Cloud legs from three research flights are classified into different regimes based on the aerosol concentration measured in the accumulation mode by the PCASP (Na) and its location above clouds. These legs include vertical transects through clouds and sawtooths (ramped legs starting above or below the cloud layer, completing a vertical transect through the cloud and repeating this pattern for several legs). The regimes; clean, mixing and separated, correspond to conditions with Na less than 100 cm-3 above cloud top, Na greater than 100 cm-3 within 100 m above cloud top and Na greater than 100 cm-3 separated from the cloud top by more than 100 m.

During the mixing regime, measurements from CAS and 2DS show that droplet concentrations and cloud optical depths increased and effective radii decreased, relative to other regimes. Drizzle suppression with lower probability of occurrence of drizzle drops (diameter greater than 50 um) and entrainment of dry air with decreased droplet concentrations near cloud tops was also observed. Similar LWC was observed across regimes with similar vertical velocities during the cloud legs.

- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner