772 GMI-IPS: Python Processing Software for Aircraft Campaigns

Tuesday, 9 January 2018
Exhibit Hall 3 (ACC) (Austin, Texas)
Megan Rose Damon, SSAI, Lanham, MD; and S. A. Strode, S. D. Steenrod, and M. J. Prather

Handout (945.8 kB)

NASA’s Atmospheric Tomography Mission (ATom) seeks to understand the impact of anthropogenic air pollution on gases in the Earth’s atmosphere. Four flight campaigns are being deployed on a seasonal basis to establish a continuous global-scale data set intended to improve the representation of chemically reactive gases in global atmospheric chemistry models. The Global Modeling Initiative (GMI), is creating chemical transport simulations on a global scale for each of the ATom flight campaigns. To meet the computational demands required to translate the GMI simulation data to grids associated with the flights from the ATom campaigns, the GMI ICARTT Processing Software (GMI-IPS) has been developed and is providing key functionality for data processing and analysis in this ongoing effort.

The GMI-IPS is written in Python and provides computational kernels for data interpolation and visualization tasks on GMI simulation data. A key feature of the GMI-IPS, is its ability to read ICARTT files, a text-based file format for airborne instrument data, and extract the required flight information that defines regional and temporal grid parameters associated with an ATom flight. Perhaps most importantly, the GMI-IPS creates ICARTT files containing GMI simulated data, which are used in collaboration with ATom instrument teams and other modeling groups.

The initial main task of the GMI-IPS is to interpolate GMI model data to the finer temporal resolution (1-10 seconds) of a given flight. The model data includes basic fields such as temperature and pressure, but the main focus of this effort is to provide species concentrations of chemical gases for ATom flights. The software, which uses parallel computation techniques for data intensive tasks, linearly interpolates each of the model fields to the time resolution of the flight. The temporally interpolated data is then saved to disk, and is used to create additional derived quantities.

In order to translate the GMI model data to the spatial grid of the flight path as defined by the pressure, latitude, and longitude points at each flight time record, a weighted average is then calculated from the nearest neighbors in two dimensions (latitude, longitude). Using SciPy’s RegularGridInterpolator, interpolation functions are generated for the GMI model grid and the calculated weighted averages. The flight path points are then extracted from the ATom ICARTT instrument file, and are sent to the multi-dimensional interpolating functions to generate GMI field quantities along the spatial path of the flight. The interpolated field quantities are then written to a ICARTT data file, which adheres to the ICARTT file format standard V1.1.

The visualization component of the GMI-IPS uses Matplotlib extensively and has several functions ranging in complexity. First, it creates a model background curtain for the flight (time versus model eta levels) with the interpolated flight data superimposed on the curtain. Secondly, it creates a time-series plot of the interpolated flight data. Lastly, the visualization component creates averaged 2D model slices (longitude versus latitude) with overlaid flight track circles at key pressure levels.

The GMI-IPS consists of a handful of classes and supporting functionality that have been generalized to be compatible with any ICARTT file that adheres to the base class definition. The base class represents a generic ICARTT entry, only defining a single time entry and 3D spatial positioning parameters. Other classes inherit from this base class; several classes for input ICARTT instrument files, which contain the necessary flight positioning information as a basis for data processing, as well as other classes for output ICARTT files, which contain the interpolated model data. Utility classes provide functionality for routine procedures such as: comparing field names among ICARTT files, reading ICARTT entries from a data file and storing them in data structures, and returning a reduced spatial grid based on a collection of ICARTT entries.

Although the GMI-IPS is compatible with GMI model data, it can be adapted with reasonable effort for any simulation that creates Hierarchical Data Format (HDF) files. The same can be said of its adaptability to ICARTT files outside of the context of the ATom mission. The GMI-IPS contains just under 30,000 lines of code, eight classes, and a dozen drivers and utility programs. It is maintained with GIT source code management and has been used to deliver processed GMI model data for the ATom campaigns that have taken place to date. This presentation will include results from the ATom-1 campaign, which occurred during the summer of 2016, as well as provide a detailed software overview of the GMI-IPS.

- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner