S204 Effects of Climate and Social Change on Pasture Productivity and Area in the Alay Valley, Kyrgyzstan 

Sunday, 7 January 2018
Exhibit Hall 5 (ACC) (Austin, Texas)
Lu Zhang, Univ. of Maryland, College Park, MD, MD

The high elevation Alay Valley, located in the central Asian country of Kyrgyzstan, has experienced substantial socio-political and environmental changes in recent decades, resulting from the collapse of the Soviet Union and an increase in average annual temperature from 1.8 C to 2.7 C between 1990 and 2014. However, the consequences of these changes on pastureland productivity and area has not been previously assessed, despite the critical cultural and economic importance of pasturelands for sustaining livelihoods in this region.

We assessed spatial and temporal patterns of soil moisture, pasture productivity and pasture area in the Alay Valley. Supervised classification was performed on Landsat imagery over the study region to distinguish pastures and agricultural land in order to relate changes in soil moisture to specific land classes. Root Zone Soil Moisture (RZSM) was estimated between May 2015 and June 2017 from Soil Moisture Active Passive L4 RZSM product. Average monthly NDVI for 2016 was calculated to obtain seasonal patterns in productivity of the pasturelands in the region.

Results show that annual RZSM trends closely matched those of precipitation, as RZSM peaks during May (the wettest month) and decreases during the dry summer. The NDVI trend is also notable as it peaks very early in June before declining due to limited precipitation and grazing practices. There has been a sharp increase in pasturelands encompassing the bank of the Kyzyl Suu river from 1993 to 2016. Likely due to turmoil from collapse of the USSR, the area of pasturelands decreased slightly from 59.98 to 55.99 km^2 from 1993-1994, corresponding with a decline in livestock count and GDP per capita. The area of pasturelands has since recovered and is hovering around 104.47 - 107.95 km^2 between 2009-2016. Overall results highlight both sensitivity and resilience of high elevation pasture to coupled socio-environmental drivers.

- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner