Thursday, 11 January 2018: 9:00 AM
Room 14 (ACC) (Austin, Texas)
We propose a novel Bayesian Monte Carlo Integration (BMCI) technique to retrieve the profiles of temperature, water vapor, and cloud liquid/ice water content from microwave cloudy measurements in the presence of TCs. These retrievals then can either be directly used by meteorologists to analyze the structure of TCs or be assimilated to provide accurate initial conditions for the NWP models. The technique is applied to the data from the Advanced Technology Microwave Sounder (ATMS) onboard Suomi National Polar-orbiting Partnership (NPP) and Global Precipitation Measurement (GPM) Microwave Imager (GMI).
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner