J15.6 An Operational System for Surveillance and Ecological Forecasting of West Nile Virus Outbreaks

Monday, 8 January 2018: 3:30 PM
Room 17B (ACC) (Austin, Texas)
Michael C. Wimberly, University of Oklahoma, Norman, OK; and J. K. Davis, G. Vincent, A. Hess, and M. B. Hildreth

Mosquito-borne disease surveillance has traditionally focused on tracking human cases along with the abundance and infection status of mosquito vectors. For many of these diseases, vector and host population dynamics are also sensitive to climatic factors, including temperature fluctuations and the availability of surface water for mosquito breeding. Thus, there is a potential to strengthen surveillance and predict future outbreaks by monitoring environmental risk factors using broad-scale sensor networks that include earth-observing satellites. The South Dakota Mosquito Information System (SDMIS) project combines entomological surveillance with gridded meteorological data from NASA’s North American Land Data Assimilation System (NLDAS) to generate weekly risk maps for West Nile virus (WNV) in the north-central United States. Critical components include a mosquito infection model that smooths the noisy infection rate and compensates for unbalanced sampling, and a human infection model that combines the entomological risk estimates with lagged effects of meteorological variables from the North American Land Data Assimilation System (NLDAS). Two types of forecasts are generated: long-term forecasts of statewide risk extending through the entire WNV season, and short-term forecasts of the geographic pattern of WNV risk in the upcoming week. Model forecasts are connected to public health actions through decision support matrices that link predicted risk levels to a set of phased responses. In 2016, the SDMIS successfully forecast an early start to the WNV season and a large outbreak of WNV cases following several years of low transmission. An evaluation of the 2017 forecasts will also be presented. Our experiences with the SDMIS highlight several important lessons that can inform future efforts at disease early warning. These include the value of integrating climatic models with recent observations of infection, the critical role of automated workflows to facilitate the timely integration of multiple data streams, the need for effective synthesis and visualization of forecasts, and the importance of linking forecasts to specific public health responses.
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner