The NASA-NCAR GCM is a completely new model which replaces the GEOS GCM used in the previous GEOS-1/2/3 Data Assimilation systems. A particular configuration of adaptive Statistical Quality Control and the Physical-space Statistical Analysis System (PSAS) are currently implemented in DAO's operational Data Assimilation System. However, the unique finite-volume formulation of the NASA-NCAR GCM, combined with the generality of the observation-space formulation of PSAS, provides for a very simple and accurate model-analysis interface. The system assimilates a variety of conventional and satellite observations. In particular, TOVS Level 1B radiances are assimilated using a 1-D variational scheme, both in clear sky and cloudy conditions. Computationally, the fvDAS runs approximately 10 times faster than the operational GEOS-Terra system.
We will show that the next-generation fvDAS has much improved observation-minus-6hr forecast (O-F) statistics, as well as 5-day forecast skills. Top of the atmosphere radiation fields are in closer agreement with CERES measurements, with realistic precipitation and moisture fields. We will also show that the finite-volume formulation of the fvDAS produce assimilated fields which are more suitable for driving constituent transport models.
Supplementary URL: