2002 Annual

Tuesday, 15 January 2002: 3:59 PM
Ensemble canonical correlation prediction of seasonal precipitation over the United States: raising the bar for dynamical model forecasts
William K. M. Lau, NASA/GSFC, Greenbelt, MD; and K. M. Kim and S. S. P. Shen
This paper presents preliminary results of an ensemble canonical correlation (ECC) prediction scheme developed at the Climate and Radiation Branch, NASA/Goddard Space Flight Center for determining the potential predictability of regional precipitation, and for climate downscaling studies. The scheme is tested on seasonal hindcasts of anomalous precipitation over the continental United States using global sea surface temperature (SST) for 1951-2000. To maximize the forecast skill derived from SST, the world ocean is divided into non-overlapping sectors. The canonical SST modes for each sector are used as the predictor for the ensemble hindcasts. Results show that the ECC yields a substantial (10-25%) increase in prediction skills for all the regions of the US in every season compared to traditional CCA prediction schemes. For the boreal winter, the tropical Pacific contributes the largest potential predictability to precipitation in the southwestern and southeastern regions, while the North Pacific and the North Atlantic are responsible to the enhanced forecast skills in the Pacific Northwest, the northern Great Plains and Ohio Valley. Most importantly, the ECC increases skill for summertime precipitation prediction and substantially reduces the spring predictability barrier over all the regions of the US continent. Besides SST, the ECC is designed with the flexibility to include any number of predictor fields, such as soil moisture, snow cover and additional local observations. The enhanced ECC forecast skill provides a new benchmark for evaluating dynamical model forecasts.

Supplementary URL: