A novel tropical cyclone dynamic initialization technique using high temporal and spatial density atmospheric motion vectors and airborne field campaign data

Thursday, 21 April 2016: 2:30 PM
Ponce de Leon C (The Condado Hilton Plaza)
Eric A. Hendricks, Naval Postgraduate School, Monterey, CA; and M. M. Bell, R. L. Elsberry, C. S. Velden, and D. J. Cecil

A new tropical cyclone dynamic initialization technique is described and tested. The technique uses the triple-nested Coupled Ocean-Atmosphere Mesoscale Prediction System-Tropical Cyclones (COAMPS-TC) (with horizontal grid spacings of 45-,15-, and 5-km, respectively) in conjunction with the Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation (SAMURAI). A proof-of-concept demonstration of this technique is given for Hurricane Joaquin from the Office of Naval Research (ONR) Tropical Cyclone Intensity (TCI) field program conducted in 2015. High spatial and temporal resolution atmospheric motion vectors (AMVs), dropwindsondes from the Yankee Environmental Systems High Definition Sounding System (HDSS), and surface wind speed retrievals from the Hurricane Imaging Radiometer (HIRAD) are ingested into SAMURAI to produce increments, which are then used by the COAMPS-TC dynamic initialization scheme to produce consistent dynamic and thermodynamically balanced fields. This high temporal resolution (order of 10-15 minutes) incremental dynamic initialization procedure has advantages over conventional methods in that a bogus vortex is not used, and existing asymmetries (including convective heating and upper and low level wind asymmetries) that exist in the TC are retained. The use of dynamic initialization also ensures improved vortex and environment balance, and consistency with the model physics. A preliminary verification of this new TC initialization scheme will be presented for the initialization and forecast of Hurricane Joaquin (2015).

- Indicates paper has been withdrawn from meeting
- Submission entered in competition