Poster Session 1 |
| Recent Developments in Atmospheric Applications of Radar and lidar |
| Cochairs: Belay B. Demoz, NASA/GSFC, Greenbelt, MD; Tammy M. Weckwerth, NCAR, Boulder, CO; Gelsomina Pappalardo, CNR/IMAA, Tito Scalo Italy; Howard B. Bluestein, Univ. of Oklahoma, Norman, OK
|
| | P1.1 | Raman-shifted Eye-safe Aerosol Lidar (REAL): Scanning, eye-safe, aerosol lidar at 1.5 microns Shane D. Mayor, California State University, Chico, Chico, CA; and S. M. Spuler and B. M. Morley |
| | P1.2 | Using a low-order model to detect and characterize tornadoes in multiple-Doppler radar data Corey K. Potvin, University of Oklahoma, Norman, OK; and A. M. Shapiro, T. Y. Yu, M. Xue, and J. Gao |
| | P1.3 | Simulation testbed for atmospheric LIDAR: application to CO2 measurements J. Stewart Hager, AER, Inc., Lexington, MA; and H. E. Snell, T. S. Zaccheo, J. Dobler, and M. E. Dobbs |
| | P1.4 | Development of high resolution and fast scanning radar Katsuyuki Imai, Sumitomo Electric Industries, Ltd., Osaka, Japan; and T. Ushio and Z. I. Kawasaki |
| | P1.5 | Cloud occurrence, layering and overlap from combined cloudsat and calipso data G. Mace, University of Utah, Salt Lake City, UT |
| | P1.6 | High resolution assimilation of CASA radar data from a tornadic convective system Alexander D. Schenkman, University of Oklahoma, Norman, OK; and A. M. Shapiro, K. Brewster, M. Xue, J. Gao, and N. Snook |
| | P1.7 | Observing Systems Simulation Experiments at NCEP -OSSEs for realistic adaptive targeted DWL, Uniform Observation and AIRS Michiko Masutani, NOAA/NWS/NCEP/EMC, JCSDA, and Wyle, Camp Springs, MD; and J. S. Woollen, H. Sun, G. D. Emmitt, Y. Song, Y. Xie, S. J. Lord, and Z. Toth |
| | P1.8 | Development of a modular wind profiling network (MPN) William O. J. Brown, NCAR, Boulder, CO; and P. B. Chilson, S. A. Cohn, T. Hock, J. R. Jordan, D. Law, B. Lindseth, R. D. Palmer, M. K. Politovich, and T. Y. Yu |
| | P1.9 | CloudSat precipitation profiling algorithm—model description Cristian Mitrescu, NRL, Monterey, CA; and J. M. Haynes, T. S. L'Ecuyer, J. Turk, and S. D. Miller |
| | P1.10 | Oxygen band radar for sea surface air pressure measurements: Applications for tropical storm forecasts Bing Lin, NASA/LaRC, Hampton, VA; and Y. Hu, S. Harrah, D. Fralick, and R. Lawrence |
| | P1.11 | A new application utilizing Google Earth to project vertical information of clouds and aerosols obtained by CALIPSO Paul Thomas Ewing, Pennsylvania State University, Huntingtown, MD; and N. A. Gasperoni, T. N. Hillyer, B. S. Hughes, J. W. Carpenter, and J. Gleason |
| | P1.12 | Multi-patterns to Reduce Sidelobe Effects on the National Weather Radar Testbed Guifu Zhang, University of Oklahoma, Norman, OK; and R. J. Doviak, C. Curtis, and Q. Cao |
| | P1.13 | Characterization of the vertical profiles of snow clouds by CloudSat radar data Guosheng Liu, Florida State University, Tallahassee, FL |
| | P1.14 | VORTRAC—A Utitility to Deduce Central Pressure and Radius of maximum wind of Landfalling Tropical Cyclones Using WSR-88D data Wen-Chau Lee, NCAR, Boulder, CO; and P. R. Harasti and M. M. Bell |
| | P1.15 | High resolution weather radar through pulse compression Timothy A. Alberts, Univeristy of Oklahoma, Norman, OK; and P. B. Chilson, B. L. Cheong, R. D. Palmer, and M. Xue |
| | P1.16 | Surface backscatter observed by CloudSat's CPR: interpretation and correction Simone Tanelli, JPL/California Institute of Technology, Pasadena, CA; and S. V. Nghiem, S. L. Durden, and E. Im |
| | P1.17 | New combined lidar and radar measurement capability from Wyoming King Air Zhien Wang, University of Wyoming, Laramie, WY; and P. Wechsler, J. R. French, A. Rodi, S. Haimov, and W. Kuestner |
| | P1.18 | Use of airborne Doppler Wind Lidar to optimize the utility of UAV and space-based systems George D. Emmitt, Simpson Weather Associates, Charlottesville, VA; and S. A. Wood, S. Greco, C. O'Handley, and H. Jonsson |
| | P1.19 | Nexrad-In-Space (NIS): Anticipated advances in hurricane monitoring & track-intensity predictions Eric A. Smith, NASA/GSFC, Greenbelt, MD; and V. Chandrasekar, S. S. Chen, G. J. Holland, E. Im, R. Kakar, W. E. Lewis, F. D. Marks, S. Tanelli, and G. J. Tripoli |
| | P1.20 | Cloud Climatology from CALIPSO: Algorithm Theoretical Basis, Performance and Global Cloud Statistics Yongxiang Hu, NASA/LRC, Hampton, VA; and B. Lin |
| | P1.21 | The global distribution of drizzle in marine stratocumulus observed by CloudSat and CALIPSO Zhien Wang, University of Wyoming, Laramie, WY; and D. Leon, G. L. Stephens, D. M. Winker, D. G. Vane, and D. Liu |
| | P1.22 | Studies of the lifecycle of tropical cloud systems using CloudSat/CALIPSO Brian J. Soden, Univ. of Miami/RSMAS, Miami, FL |
| | P1.23 | Use of coincident CloudSat & TRMM radar reflectivity cross-sections to investigate diurnal cycle of precipitation within marine stratocumulus cloud environments Eric A. Smith, NASA/GSFC, Greenbelt,, MD; and H. M. Carty, K. S. Kuo, and S. Yang |
| | P1.24 | Use of active remote sensors to improve the accuracy of cloud top heights derived from thermal satellite observations Christopher Rogers Yost, Science Systems and Applications, Inc., Hampton, VA; and P. Minnis, S. Sun-Mack, Y. Chen, and M. J. McGill |
| | P1.25 | PAPER WITHDRAWN
|
| | P1.26 | Application of the NASA A-Train to evaluate clouds simulated by the Weather Research and Forecast Model Andrew L. Molthan, University of Alabama Huntsville, Huntsville, AL; and G. J. Jedlovec and W. M. Lapenta |
| | P1.27 | CALIPSO data and tools available from NASA's Atmospheric Science Data Center Linda A. Hunt, SSAI/NASA Langley Atmospheric Science Data Center, Hampton, VA |
| | P1.28 | Using A-train to establish the effects of Saharan Dust on the development and intensity of tropical cyclones Thomas A. Kovacs, Eastern Michigan University, Ypsilanti, MI |
| | P1.29 | A preliminary arctic cloud climatology and heat budget from CloudSat and CALIPSO Aaron J. Schwartz, CIRA/Colorado State Univ., Fort Collins, CO; and T. H. Vonder Haar |