In this study, we assess multiple points of intersection of SMAP products with offline and coupled models and evaluate impacts using process-level diagnostics. Results will inform upon the importance of high-resolution soil moisture mapping for improved coupled prediction and model development, as well as reconciling differences in modeled, retrieved, and measured soil moisture. Specifically, NASA model (LIS, NU-WRF) and observation (SMAP, NLDAS-2) products are combined with in-situ standard and IOP measurements (soil moisture, flux, and radiosonde) over the ARM-SGP. An array of land surface model spinups (via LIS-Noah) are performed with varying atmospheric forcing, greenness fraction, and soil layering permutations. Calibration of LIS-Noah soil hydraulic parameters is then performed using an array of in-situ soil moisture and flux and SMAP products. In addition, SMAP assimilation is performed in LIS-Noah both at the scale of the observation (36 and 9km) and the model grid (1km). The focus is on the consistency in calibrated parameters, impact of soil drydown dynamics and soil layers, and terrestrial (soil moisture-flux) coupling. The impacts of these various spinup runs and initialization of NU-WRF coupled forecasts then follows with a focus on weather (ambient, PBL, and precipitation) using LoCo metrics.