Wednesday, 10 January 2018: 9:00 AM
Salon J (Hilton) (Austin, Texas)
Space weather induces significant geoelectric fields within Earth’s subsurface that can adversely affect electric power grids. The complex interaction between space weather and the solid Earth has traditionally been approached with the use of simple 1-D impedance functions relating the inducing magnetic field to the induced geoelectric field. Ongoing data collection through the NSF EarthScope program has produced measured impedance data across much of the continental US. In this work, impedance data are convolved with magnetic field variations, obtained from USGS magnetic observatories, during a geomagnetic storm. This convolution produces geoelectric fields within the earth. These geoelectric fields are then integrated across power transmission lines to determine the voltage generated within each power line as a function of time during a geomagnetic storm. The voltages generated within the electric power grid will be shown for several historic geomagnetic storms. The estimated voltages calculated from 1-D and 3-D impedances differ by more than 100 V across some transmission lines. In combination with grounding resistance data and network topology, these voltage estimates can be utilized by power companies to estimate geomagnetically-induced currents throughout the network. These voltage estimates can provide information on which power lines are most vulnerable to geomagnetic storms, and assist power grid companies investigating where to install additional protections within their grid.
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner