Wednesday, 10 January 2018: 11:45 AM
Salon F (Hilton) (Austin, Texas)
The flux of moist static energy (MSE) across 70ºN plays a key role in the energy budget and climate of the Arctic. This flux, which provides about 100 W/m2 heating of the polar cap, is usually studied from a vertically integrated perspective. Here we examine its vertical structure, using the MERRA-2 reanalysis to compute monthly fluxes of sensible, latent and potential energy across 70ºN for the period 1980-2016. The flux is bimodal, with peaks in the lower troposphere and in the stratosphere around 50 hPa, and is near zero at the tropopause. Distinctly different seasonal cycles are found for the stratospheric and tropospheric components. The fraction of the total integrated MSE flux occurring in the stratosphere is 19% during a typical winter and only 7% during summer. Interannual variability of the stratospheric flux is intimately connected to sudden stratospheric warming (SSW) events. Months in which SSWs are observed feature both an increased total flux and a larger fraction occurring in the stratosphere (up to 35% of the total). For comparison we also compute the MSE flux at 65ºS, and find a large increase in the total flux coincident with the only observed southern hemisphere SSW in 2002. The relationship between the tropospheric and stratospheric fluxes are explored through lead-lag correlations. The strongest correlation (+0.29) is found with the troposphere leading the stratosphere by 1 month. This positive correlation appears to be stronger during SSWs. With the stratosphere leading by 1 month, a weaker correlation of -0.14 is found. Qualitatively similar results are found at 65ºS. No trend is detected in the stratospheric flux. A statistically significant trend of -1.30 W/m2 per decade is found for the NH tropospheric flux.
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner